Bài 11. Nguyên hàm - Toán 12 Kết nối tri thức
Giải mục 2 trang 6,7,8 SGK Toán 12 tập 2 - Kết nối tri thức
Tính chất cơ bản của nguyên hàm
Giải mục 3 trang 8,9,10 SGK Toán 12 tập 2 - Kết nối tri thức
Nguyên hàm của một số hàm số thường gặp
Giải bài tập 4.1 trang 11 SGK Toán 12 tập 2 - Kết nối tri thức
Trong mỗi trường hợp sau, hàm số F(x) có là một nguyên hàm của hàm số f(x) trên khoảng tương ứng không? Vì sao?
a) \(F\left( x \right) = x\ln x\) và \(f\left( x \right) = 1 + \ln x\) trên khoảng \(\left( {0; + \infty } \right)\);
b) \(F\left( x \right) = {e^{\sin x}}\) và \(f\left( x \right) = {e^{\cos x}}\) trên \(\mathbb{R}\).
Giải bài tập 4.2 trang 11 SGK Toán 12 tập 2 - Kết nối tri thức
Tìm nguyên hàm của các hàm số sau:
a) \(f\left( x \right) = 3{x^2} + 2x - 1\);
b) \(f\left( x \right) = {x^3} - x\);
c) \(f\left( x \right) = {\left( {2x + 1} \right)^2}\);
d) \(f\left( x \right) = {\left( {2x - \frac{1}{x}} \right)^2}\).
Giải bài tập 4.3 trang 11 SGK Toán 12 tập 2 - Kết nối tri thức
Tìm:
a) \(\int {\left( {3\sqrt x + \frac{1}{{\sqrt[3]{x}}}} \right)} dx\);
b) \(\int {\sqrt x \left( {7{x^2} - 3} \right)} dx\left( {x > 0} \right)\);
c) \(\int {\frac{{{{\left( {2x + 1} \right)}^2}}}{{{x^2}}}} dx\);
d) \(\int {\left( {{2^x} + \frac{3}{{{x^2}}}} \right)} dx\).
Giải bài tập 4.4 trang 11 SGK Toán 12 tập 2 - Kết nối tri thức
Tìm:
a) \(\int {\left( {2\cos x - \frac{3}{{{{\sin }^2}x}}} \right)} dx\);
b) \(\int {4{{\sin }^2}\frac{x}{2}} dx\);
c) \(\int {{{\left( {\sin \frac{x}{2} - \cos \frac{x}{2}} \right)}^2}} dx\);
d) \(\int {\left( {x + {{\tan }^2}x} \right)} dx\).
Giải bài tập 4.5 trang 11 SGK Toán 12 tập 2 - Kết nối tri thức
Cho hàm số \(y = f\left( x \right)\) xác định trên khoảng \(\left( {0; + \infty } \right)\). Biết rằng \(f'\left( x \right) = 2x + \frac{1}{{{x^2}}}\) với mọi \(x \in \left( {0; + \infty } \right)\) và \(f\left( 1 \right) = 1\). Tính giá trị f(4).
Giải bài tập 4.6 trang 11 SGK Toán 12 tập 2 - Kết nối tri thức
Cho hàm số \(y = f\left( x \right)\) có đồ thị là (C). Xét điểm \(M\left( {x;f\left( x \right)} \right)\) thay đổi trên (C). Biết rằng, hệ số góc của tiếp tuyến của đồ thị (C) tại M là \({k_M} = {\left( {x - 1} \right)^2}\) và điểm M trùng với gốc tọa độ khi nó nằm trên trục tung. Tìm biểu thức f(x).
Giải bài tập 4.7 trang 11 SGK Toán 12 tập 2 - Kết nối tri thức
Một viên đạn được bắn thẳng đứng lên trên từ mặt đất. Giả sử tại thời điểm t giây (coi \(t = 0\) là thời điểm viên đạn được bắn lên), vận tốc của nó được cho bởi \(v\left( t \right) = 160 - 9,8t\left( {m/s} \right)\). Tìm độ cao của viên đạn (tính từ mặt đất).
a) Sau \(t = 5\) giây;
b) Khi nó đạt độ cao lớn nhất (làm tròn kết quả đến chữ số thập phân thứ nhất).