Giải bài tập 5.36 trang 61 SGK Toán 12 tập 2 - Kết nối tri thức

Trong không gian Oxyz, cho hai điểm \(A\left( { - 1;0; - 1} \right),B\left( {2;1;1} \right)\). Phương trình đường thẳng AB là A. \(\left\{ \begin{array}{l}x = 1 + 3t\\y = t\\z = 1 + 2t\end{array} \right.\). B. \(\left\{ \begin{array}{l}x = - 1 + t\\y = t\\z = - 1 + 2t\end{array} \right.\). C. \(\left\{ \begin{array}{l}x = 2 + t\\y = 1 + t\\z = 1 + 2t\end{array} \right.\). D. \(\left\{ \begin{array}{l}x = - 1 + 3t\\y = t\\z = - 1 + 2t\end{array} \right.\).


Đề bài

Trong không gian Oxyz, cho hai điểm \(A\left( { - 1;0; - 1} \right),B\left( {2;1;1} \right)\). Phương trình đường thẳng AB là

A. \(\left\{ \begin{array}{l}x = 1 + 3t\\y = t\\z = 1 + 2t\end{array} \right.\).

B. \(\left\{ \begin{array}{l}x =  - 1 + t\\y = t\\z =  - 1 + 2t\end{array} \right.\).

C. \(\left\{ \begin{array}{l}x = 2 + t\\y = 1 + t\\z = 1 + 2t\end{array} \right.\).

D. \(\left\{ \begin{array}{l}x =  - 1 + 3t\\y = t\\z =  - 1 + 2t\end{array} \right.\).

Phương pháp giải - Xem chi tiết

Sử dụng kiến thức về phương trình tham số của đường thẳng để viết phương trình đường thẳng: Trong không gian Oxyz, cho đường thẳng \(\Delta \) đi qua điểm \(A\left( {{x_0};{y_0};{z_0}} \right)\) và có vectơ chỉ phương \(\overrightarrow u  = \left( {a;b;c} \right)\). Hệ phương trình \(\left\{ \begin{array}{l}x = {x_0} + at\\y = {y_0} + bt\\z = {z_0} + ct\end{array} \right.\) được gọi là phương trình tham số của đường thẳng \(\Delta \) (t là tham số, \(t \in \mathbb{R}\))

Lời giải chi tiết

Đường thẳng AB đi qua điểm \(A\left( { - 1;0; - 1} \right)\) và nhận \(\overrightarrow {AB} \left( {3;1;2} \right)\) làm một vectơ chỉ phương. Do đó, phương trình tham số của đường thẳng AB là: \(\left\{ \begin{array}{l}x =  - 1 + 3t\\y = t\\z =  - 1 + 2t\end{array} \right.\)

Chọn D



Bài giải liên quan

Từ khóa phổ biến