Giải bài tập 5 trang 20 SGK Toán 12 tập 1 - Cánh diều

Trong 5s đầu tiên, một chất điểm chuyển động theo phương trình: \(s\left( t \right) = - {t^3} + 6{t^2} + t + 5\) Trong đó t tính bằng giây và s tính bằng mét. Chất điểm có vận tốc tức thời lớn nhất bằng bao nhiêu trong 5 giây đầu tiên đó?


Đề bài

Trong 5s đầu tiên, một chất điểm chuyển động theo phương trình:

\(s\left( t \right) =  - {t^3} + 6{t^2} + t + 5\)

Trong đó t tính bằng giây và s tính bằng mét. Chất điểm có vận tốc tức thời lớn nhất bằng bao nhiêu trong 5 giây đầu tiên đó?

 

Phương pháp giải - Xem chi tiết

B1: Tìm các điểm \({x_1},{x_2},...,{x_n}\) thuộc khoảng \(\left( {a;b} \right)\) mà tại đó hàm số có đạo hàm bằng 0 hoặc không tồn tại.

B2: Tính \(f\left( {{x_1}} \right),f\left( {{x_2}} \right),...,f\left( {{x_n}} \right),f\left( a \right),f\left( b \right)\)

B3: So sánh các giá trị tìm được ở bước 2 và kết luận

 

Lời giải chi tiết

Ta có: \(v\left( t \right) = s'\left( t \right) =  - 3{t^2} + 12t + 1\).

Nhận xét: \(v\left( t \right)\)có đồ thị là một parabol nên trong 5s đầu tiên vận tốc tức thời cúa chất điểm đạt giá trị lớn nhất bằng 13 tại \(t = 2s\).

 


Từ khóa phổ biến