Bài tập cuối chương 2 - Toán 12 Cánh diều


Giải bài tập 1 trang 82 SGK Toán 12 tập 1 - Cánh diều

Cho điểm M thỏa mãn (overrightarrow {OM} = 3overrightarrow i + 4overrightarrow j + 2overrightarrow k ). Tọa độ của điểm M là: A. (2;3;4) B. (3;4;2) C. (4,2,3) D. (3;2;4)

Giải bài tập 2 trang 82 SGK Toán 12 tập 1 - Cánh diều

Cho hai điểm M(1;-2;3) và N(3;4;-5). Tọa độ của vecto \(\overrightarrow {NM} \) là: A. (-2;6;8) B. (2;6;-8) C. (-2;6;-8) D. (-2;-6;8)

Giải bài tập 3 trang 82 SGK Toán 12 tập 1 - Cánh diều

Cho hai vecto \(\overrightarrow u = (3; - 4;5),\overrightarrow v = (5;7; - 1)\). Tọa độ của vecto \(\overrightarrow u + \overrightarrow v \) là: A. (8;3;4) B. (-2;-11;6) C. (2;11;-6) D. (-8;-3;-4)

Giải bài tập 4 trang 82 SGK Toán 12 tập 1 - Cánh diều

Cho hai vecto \(\overrightarrow u = (1; - 2;3),\overrightarrow v = (5;4; - 1)\). Tọa độ của vecto \(\overrightarrow u - \overrightarrow v \) là: A. (4;6;4) B. (-4;-6;4) C. (4;6;-4) D. (-4;-6;-4)

Giải bài tập 5 trang 82 SGK Toán 12 tập 1 - Cánh diều

Cho vecto \(\overrightarrow u = (1; - 1;3)\). Tọa độ của vecto \( - 3\overrightarrow u \) là: A. (3;-3;9) B. (3;-3;-9) C. (-3;3;-9) D. (3;3;9)

Giải bài tập 6 trang 82 SGK Toán 12 tập 1 - Cánh diều

Độ dài của vecto \(\overrightarrow u = (2; - 2;1)\) là: A. 9 B. 3 C. 2 D. 4

Giải bài tập 7 trang 82 SGK Toán 12 tập 1 - Cánh diều

Tích vô hướng của hai vecto \(\overrightarrow u = (1; - 2;3),\overrightarrow v = (3;4; - 5)\) là: A. \(\sqrt {14} .\sqrt {50} \) B. \( - \sqrt {14} .\sqrt {50} \) C. 20 D. -20

Giải bài tập 8 trang 82 SGK Toán 12 tập 1 - Cánh diều

Khoảng cách giữa hai điểm I(1;4;-7) và K(6;4;5) là: A. 169 B. 13 C. 26 D. 6,5

Giải bài tập 9 trang 82 SGK Toán 12 tập 1 - Cánh diều

Cho hai điểm M(1;-2;3) và N(3;4;-5). Trung điểm của đoạn thẳng MN có tọa độ là: A. (-2;1;1) B (2;1;1) C. (-2;1;-1) D. (2;1;-1)

Giải bài tập 10 trang 82 SGK Toán 12 tập 1 - Cánh diều

Cho tam giác MNP có M(0;2;1), N(-1;-2;3) và P(1;3;2). Trọng tâm của tam giác MNP có tọa độ là: A. (0;1;2) B. (0;3;6) C. (0;-3;-6) D. (0;-1;-2)

Giải bài tập 11 trang 83 SGK Toán 12 tập 1 - Cánh diều

Cho hai vecto \(\overrightarrow u = (1; - 2;3),\overrightarrow v = (3;4; - 5)\). Hãy chỉ ra tọa độ của một vecto \(\overrightarrow w \) khác \(\overrightarrow 0 \) vuông góc với cả hai vecto \(\overrightarrow u \) và \(\overrightarrow v \)

Giải bài tập 12 trang 83 SGK Toán 12 tập 1 - Cánh diều

Cho hình lập phương ABCD.A’B’C’D’ có cạnh bằng a. Gọi M, N lần lượt là trung điểm của các cạnh AA’ và CC’. Tính góc giữa hai vecto \(\overrightarrow {MN} \) và \(\overrightarrow {AD'} \)

Giải bài tập 13 trang 83 SGK Toán 12 tập 1 - Cánh diều

Xét hệ tọa độ Oxyz gắn với hình lập phương ABCD.A’B’C’D’ như Hình 39, đơn vị của mỗi trục bằng độ dài cạnh hình lập phương. Biết A(0;0;0), B(1;0;0), D(0;1;0), A’(0;0;1). a) Xác định tọa độ các đỉnh còn lại của hình lập phương ABCD.A’B’C’D’ b) Xác định tọa độ trọng tâm G của tam giác A’BD c) Xác định tọa độ các vecto \(\overrightarrow {OG} \) và \(\overrightarrow {OC'} \). Chứng minh rằng ba điểm O, G, C’ thẳng hàng và \(OG = \frac{1}{3}OC\)

Giải bài tập 14 trang 83 SGK Toán 12 tập 1 - Cánh diều

Trong không gian với hệ tọa độ Oxyz, cho A(2;0;-3), B(0;-4;5) và C(-1;2;0). a) Chứng minh rằng ba điểm A, B, C không thằng hàng b) Tìm tọa độ của điểm D sao cho tứ giác ABCD là hình bình hành c) Tìm tọa độ trọng tâm G của tam giác ABC d) Tính chu vi của tam giác ABC e) Tính \(\cos \overrightarrow {BAC} \)

Giải bài tập 15 trang 83 SGK Toán 12 tập 1 - Cánh diều

Một chiếc máy được đặt trên một giá đỡ ba chân với điểm đặt E(0;0;6) và các điểm tiếp xúc với mặt đất của ba chân lần lượt là \({A_1}(0;1;0)\), \({A_2}(\frac{{\sqrt 3 }}{2}; - \frac{1}{2};0)\), \({A_3}( - \frac{{\sqrt 3 }}{2}; - \frac{1}{2};0)\) (Hình 40). Biết rằng trọng lượng của chiếc máy là 300N. Tìm tọa độ của các lực tác dụng lên giá đỡ \(\overrightarrow {{F_1}} ,\overrightarrow {{F_2}} ,\overrightarrow {{F_3}} \)

Bài học bổ sung