Giải bài tập 15 trang 83 SGK Toán 12 tập 1 - Cánh diều

Một chiếc máy được đặt trên một giá đỡ ba chân với điểm đặt E(0;0;6) và các điểm tiếp xúc với mặt đất của ba chân lần lượt là \({A_1}(0;1;0)\), \({A_2}(\frac{{\sqrt 3 }}{2}; - \frac{1}{2};0)\), \({A_3}( - \frac{{\sqrt 3 }}{2}; - \frac{1}{2};0)\) (Hình 40). Biết rằng trọng lượng của chiếc máy là 300N. Tìm tọa độ của các lực tác dụng lên giá đỡ \(\overrightarrow {{F_1}} ,\overrightarrow {{F_2}} ,\overrightarrow {{F_3}} \)


Đề bài

Một chiếc máy được đặt trên một giá đỡ ba chân với điểm đặt E(0;0;6) và các điểm tiếp xúc với mặt đất của ba chân lần lượt là \({A_1}(0;1;0)\), \({A_2}(\frac{{\sqrt 3 }}{2}; - \frac{1}{2};0)\), \({A_3}( - \frac{{\sqrt 3 }}{2}; - \frac{1}{2};0)\) (Hình 40). Biết rằng trọng lượng của chiếc máy là 300N. Tìm tọa độ của các lực tác dụng lên giá đỡ \(\overrightarrow {{F_1}} ,\overrightarrow {{F_2}} ,\overrightarrow {{F_3}} \)

 

Phương pháp giải - Xem chi tiết

Vì đèn cân bằng nên trọng lực của đèn sẽ phân bố đều trên các chân của giá đỡ. Từ tọa độ các điểm đã cho, ta tìm được cái mối liên hệ với vecto lực và tìm được tọa độ của các vecto lực

 

Lời giải chi tiết

Ta có: \(\overrightarrow {E{A_1}}  = (0;1; - 6);\overrightarrow {E{A_2}}  = (\frac{{\sqrt 3 }}{2}; - \frac{1}{2}; - 6);\overrightarrow {E{A_3}}  = ( - \frac{{\sqrt 3 }}{2}; - \frac{1}{2}; - 6) \Rightarrow E{A_1} = E{A_2} = E{A_3} = \sqrt {37} \)

\(\left| {\overrightarrow {{F_1}} } \right| = \left| {\overrightarrow {{F_2}} } \right| = \left| {\overrightarrow {{F_3}} } \right|\) vì đèn cân bằng và trọng lực của đèn tác dụng đều lên 3 chân của giá đỡ

Do đó:

\(\overrightarrow {{F_1}}  = k\overrightarrow {E{A_1}}  = (0;k; - 6k)\)

\(\overrightarrow {{F_2}}  = k\overrightarrow {E{A_2}}  = (\frac{{\sqrt 3 }}{2}k; - \frac{1}{2}k; - 6k)\)

\(\overrightarrow {{F_3}}  = k\overrightarrow {E{A_3}}  = ( - \frac{{\sqrt 3 }}{2}k; - \frac{1}{2}k; - 6k)\)

\( \Rightarrow \overrightarrow {{F_1}}  + \overrightarrow {{F_2}}  + \overrightarrow {{F_3}}  = (0;0; - 18k)\)

Mà \(\overrightarrow {{F_1}}  + \overrightarrow {{F_2}}  + \overrightarrow {{F_3}}  = \overrightarrow P  = (0;0; - 300) \Rightarrow  - 18k = 300 \Leftrightarrow k = \frac{{50}}{3}\)

Vậy \(\overrightarrow {{F_1}}  = (0;\frac{{50}}{3}; - 100)\); \(\overrightarrow {{F_2}}  = (\frac{{25\sqrt 3 }}{3}; - \frac{{50}}{6}; - 100)\);\(\overrightarrow {{F_3}}  = ( - \frac{{25\sqrt 3 }}{3}; - \frac{{50}}{6}; - 100)\)

 

Bài giải tiếp theo



Từ khóa phổ biến