Giải bài tập 3.21 trang 59 SGK Toán 9 tập 1 - Kết nối tri thức

Rút gọn các biểu thức sau: a) (2sqrt {frac{2}{3}} - 4sqrt {frac{3}{2}} ;) b) (frac{{5sqrt {48} - 3sqrt {27} + 2sqrt {12} }}{{sqrt 3 }};) c) (frac{1}{{3 + 2sqrt 2 }} + frac{{4sqrt 2 - 4}}{{2 - sqrt 2 }}.)


Đề bài

Rút gọn các biểu thức sau:

a) \(2\sqrt {\frac{2}{3}}  - 4\sqrt {\frac{3}{2}} ;\)

b) \(\frac{{5\sqrt {48}  - 3\sqrt {27}  + 2\sqrt {12} }}{{\sqrt 3 }};\)

c) \(\frac{1}{{3 + 2\sqrt 2 }} + \frac{{4\sqrt 2  - 4}}{{2 - \sqrt 2 }}.\)

Phương pháp giải - Xem chi tiết

Sử dụng trục căn thức để khử mẫu, đưa thừa số ra ngoài dấu căn và đưa vào trong dấu căn, kết hợp các phương pháp để rút gọn biểu thức

Lời giải chi tiết

a) \(2\sqrt {\frac{2}{3}}  - 4\sqrt {\frac{3}{2}} \)\( = 2\frac{{\sqrt 2 }}{{\sqrt 3 }} - 4\frac{{\sqrt 3 }}{{\sqrt 2 }}\)\( = 2.\frac{{\sqrt 6 }}{3} - 4.\frac{{\sqrt 6 }}{2}\)\( = \sqrt 6 \left( {\frac{2}{3} - 2} \right)\)\( = \frac{{ - 4\sqrt 6 }}{3}.\)

b) \(\frac{{5\sqrt {48}  - 3\sqrt {27}  + 2\sqrt {12} }}{{\sqrt 3 }}\)\( = \frac{{5\sqrt {16.3}  - 3\sqrt {9.3}  + 2\sqrt {4.3} }}{{\sqrt 3 }}\)\( = \frac{{\sqrt 3 .\left( {5\sqrt {16}  - 3\sqrt 9  + 2\sqrt 4 } \right)}}{{\sqrt 3 }}\)\( = 5.4 - 3.3 + 2.2\)\( = 20 - 9 + 4\)\( = 15\)

c) \(\frac{1}{{3 + 2\sqrt 2 }} + \frac{{4\sqrt 2  - 4}}{{2 - \sqrt 2 }}\)\( = \frac{{3 - 2\sqrt 2 }}{{\left( {3 + 2\sqrt 2 } \right)\left( {3 - 2\sqrt 2 } \right)}} + \frac{{4\left( {\sqrt 2  - 1} \right)}}{{\sqrt 2 \left( {\sqrt 2  - 1} \right)}}\)\( = \frac{{3 - 2\sqrt 2 }}{{9 - 8}} + \frac{4}{{\sqrt 2 }}\)\( = 3 - 2\sqrt 2  + \frac{{4\sqrt 2 }}{2}\)

\( = 3 - 2\sqrt 2  + 2\sqrt 2 \)\( = 3\)



Bài học liên quan

Từ khóa phổ biến