Giải bài tập 2 trang 27 SGK Toán 12 tập 1 - Cánh diều

Tiệm cận xiên của đồ thị hàm số \(y = \frac{{{x^2} + 3x + 5}}{{x + 2}}\) là: A. \(y = x\). B. \(y = x + 1\). C. \(y = x + 2\). D. \(y = x + 3\).


Đề bài

Tiệm cận xiên của đồ thị hàm số \(y = \frac{{{x^2} + 3x + 5}}{{x + 2}}\) là:
A. \(y = x\).
B. \(y = x + 1\).
C. \(y = x + 2\).
D. \(y = x + 3\).

Phương pháp giải - Xem chi tiết

Đưởng thẳng \(y = ax + b\left( {a \ne 0} \right)\) được gọi là tiệm cận xiên của đồ thị hàm số \(y = f\left( x \right)\) nếu:

\(\mathop {\lim }\limits_{x \to  + \infty } \left[ {f\left( x \right) - \left( {ax + b} \right)} \right] = 0\) hoặc \(\mathop {\lim }\limits_{x \to  - \infty } \left[ {f\left( x \right) - \left( {ax + b} \right)} \right] = 0\).

Lời giải chi tiết

Ta có: \(y = \frac{{{x^2} + 3x + 5}}{{x + 2}} = x + 1 + \frac{3}{{x + 2}}\)

Xét \(\mathop {\lim }\limits_{x \to  + \infty } \left[ {y - \left( {x - 6} \right)} \right] = \mathop {\lim }\limits_{x \to  + \infty } \frac{3}{{x + 2}} = 0\)

Vậy đường thẳng \(y = x + 1\) là đường tiệm cận xiên của đồ thị hàm số \(y = \frac{{{x^2} + 3x + 5}}{{x + 2}}\)



Từ khóa phổ biến