Giải bài tập 1 trang 11 SGK Toán 9 tập 1 - Cánh diều

Giải các phương trình: a. (left( {9x - 4} right)left( {2x + 5} right) = 0); b. (left( {1,3x + 0,26} right)left( {0,2x - 4} right) = 0); c. (2xleft( {x + 3} right) - 5left( {x + 3} right) = 0); d. ({x^2} - 4 + left( {x + 2} right)left( {2x - 1} right) = 0).


Đề bài

Giải các phương trình:

a. \(\left( {9x - 4} \right)\left( {2x + 5} \right) = 0\);

b. \(\left( {1,3x + 0,26} \right)\left( {0,2x - 4} \right) = 0\);

c. \(2x\left( {x + 3} \right) - 5\left( {x + 3} \right) = 0\);

d. \({x^2} - 4 + \left( {x + 2} \right)\left( {2x - 1} \right) = 0\).

Phương pháp giải - Xem chi tiết

+ Đưa các phương trình chưa thuộc dạng phương trình tích về phương trình tích.

+ Giải hai phương trình thuộc tích để tìm nghiệm.

+ Kết luận nghiệm.

Lời giải chi tiết

a. \(\left( {9x - 4} \right)\left( {2x + 5} \right) = 0\)

Để giải phương trình đã cho, ta giải hai phương trình sau:

*) \(9x - 4 = 0\)

\(x = \frac{4}{9}\);

*) \(2x + 5 = 0\)

\(x =  - \frac{5}{2}\).

Vậy phương trình có nghiệm \(x = \frac{4}{9}\) và \(x =  - \frac{5}{2}\).

b. \(\left( {1,3x + 0,26} \right)\left( {0,2x - 4} \right) = 0\)

Để giải phương trình đã cho, ta giải hai phương trình sau:

*) \(1,3x + 0,26 = 0\)                           

\(x = 0,2\);                                             

*) \(0,2x - 4 = 0\)

\(x = 20\).

Vậy phương trình có nghiệm \(x = 0,2\) và \(x = 20\).

c. \(2x\left( {x + 3} \right) - 5\left( {x + 3} \right) = 0\)

\(\left( {2x - 5} \right)\left( {x + 3} \right) = 0\).

Để giải phương trình đã cho, ta giải hai phương trình sau:

*) \(2x - 5 = 0\)                                       

\(x = \frac{5}{2}\);                                                     

*) \(x + 3 = 0\)

\(x =  - 3\).

Vậy phương trình có nghiệm \(x = \frac{5}{2}\) và \(x =  - 3\).

d. \({x^2} - 4 + \left( {x + 2} \right)\left( {2x - 1} \right) = 0\)

\(\left( {x - 2} \right)\left( {x + 2} \right) + \left( {x + 2} \right)\left( {2x - 1} \right) = 0\)

\(\left( {x + 2} \right)\left( {x - 2 + 2x - 1} \right) = 0\)

\(\left( {x + 2} \right)\left( {3x - 3} \right) = 0\)

Để giải phương trình đã cho, ta giải hai phương trình sau:

*) \(x + 2 = 0\)                                             

\(x =  - 2\);                                                         

*) \(3x - 3 = 0\)

\(x = 1\).

Vậy phương trình đã cho có nghiệm \(x =  - 2\) và \(x = 1\).



Bài học liên quan

Từ khóa phổ biến