Giải bài 7.33 trang 41 sách bài tập toán 11 - Kết nối tri thức với cuộc sống

Cho hình chóp \(S.ABC\) có \(SA \bot \left( {ABC} \right);\)\(AB = a;\)\(AC = a\sqrt 2 \)


Đề bài

Cho hình chóp \(S.ABC\) có \(SA \bot \left( {ABC} \right);\)\(AB = a;\)\(AC = a\sqrt 2 \) và \(\widehat {SBA} = 60^\circ \), \(\widehat {BAC} = 45^\circ \). Tính theo \(a\) thể tích khối chóp \(S.ABC\).

Phương pháp giải - Xem chi tiết

Áp dụng công thức tính thể tích khối chóp: \(S = \frac{1}{3}Bh\).

Trong đó: \(B\) là diện tích đa giác đáy

\(h\)là đường cao của hình chóp

Lời giải chi tiết

Ta có: \(SA = AB \cdot {\rm{tan}}60^\circ  = a\sqrt 3 \); \({S_{ABC}} = \frac{1}{2} \cdot AB \cdot AC \cdot {\rm{sin}}\widehat {BAC} = \frac{{{a^2}}}{2}\)

Vậy \({V_{S \cdot ABC}} = \frac{1}{3} \cdot {S_{ABC}} \cdot SA = \frac{{{a^3}\sqrt 3 }}{6}\).



Từ khóa phổ biến