Giải bài 5.27 trang 87 sách bài tập toán 11 - Kết nối tri thức với cuộc sống
Cho \(L = \mathop {\lim }\limits_{n \to + \infty } \left( {{n^3} - 2{n^2} + 1} \right)\). Giá trị của L là
Đề bài
Cho \(L = \mathop {\lim }\limits_{n \to + \infty } \left( {{n^3} - 2{n^2} + 1} \right)\). Giá trị của L là
A. \(L = 0\)
B. \(L = - \infty \)
C. \(L = + \infty \)
D.\(L = 0\).
Phương pháp giải - Xem chi tiết
Nhóm số hạng có số mũ lớn nhất ra ngoài. Áp dụng các quy tắc tính giới hạn để biến đổi và tính toán. (Nếu \(\mathop {\lim }\limits_{n \to + \infty } {u_n} = + \infty \) và \(\mathop {\lim }\limits_{n \to + \infty } {v_n} = a > 0\) thì \(\mathop {\lim }\limits_{n \to + \infty } {u_n}{v_n} = + \infty \))
Lời giải chi tiết
Đáp án C
\(L = \mathop {\lim }\limits_{n \to + \infty } \left( {{n^3} - 2{n^2} + 1} \right) = \mathop {\lim }\limits_{n \to + \infty } {n^3}\left( {1 - \frac{2}{n} + \frac{1}{{{n^3}}}} \right) = + \infty \).
Search google: "từ khóa + timdapan.com" Ví dụ: "Giải bài 5.27 trang 87 sách bài tập toán 11 - Kết nối tri thức với cuộc sống timdapan.com"