Bài 44 trang 26 SBT toán 7 tập 2

Giải bài 44 trang 26 sách bài tập toán 7. Tìm nghiệm của các đa thức sau: a)2x+10...


Đề bài

Tìm nghiệm của các đa thức sau:

a) \(\displaystyle {\rm{}}2{\rm{x}} + 10\)

b) \(\displaystyle 3{\rm{x}} - {1 \over 2}\)

c) \(\displaystyle {x^2} - x\) 

Phương pháp giải - Xem chi tiết

Nếu tại \(x = a\) đa thức \(P(x)\) có giá trị bằng \(0\) thì ta nói \(a\) là một nghiệm của đa thức \(P(x)\).

Có nghĩa là ta cho \(P(x)=0\) rồi tìm ra \(x\) là nghiệm của đa thức \(P(x)\) 

Lời giải chi tiết

a) Ta có: \(\displaystyle 2x + 10 = 0 \Rightarrow  2x = -10\)\(\displaystyle  \Rightarrow  x = -10: 2 \Rightarrow  x = -5\)

Vậy \(\displaystyle x = -5\) là nghiệm của đa thức \(\displaystyle 2x + 10\)

b) Ta có: \(\displaystyle 3{\rm{x}} - {1 \over 2} = 0\)\(\displaystyle \Rightarrow 3{\rm{x}} = {1 \over 2} \)\(\displaystyle \Rightarrow x = {1 \over 2}:3 = {1 \over 6}\)

Vậy \(\displaystyle {\rm{x}} = {1 \over 6}\) là nghiệm của đa thức \(\displaystyle 3{\rm{x}} - {1 \over 2}\)

c) Ta có: \(\displaystyle {x^2} - x = 0 \Rightarrow x\left( {x - 1} \right) = 0\)

Suy ra \(\displaystyle x=0\) hoặc \(\displaystyle x-1=0\)  

Hay \(\displaystyle x=0\) hoặc \(\displaystyle x=1\) 

Vậy \(\displaystyle x = 0\) hoặc \(\displaystyle x = 1\) là nghiệm của đa thức \(\displaystyle {x^2} - x.\)