Bài 44 trang 143 SBT toán 7 tập 1
Giải bài 44 trang 143 sách bài tập toán 7 tập 1. Cho tam giác AOB có AO = OB. Tia phân giác của góc O cắt AB ở D...
Đề bài
Cho tam giác \(AOB\) có \(OA = OB.\) Tia phân giác của góc \(O\) cắt \(AB\) ở \(D.\) Chứng minh rằng:
a) \(DA = DB\)
b) \(O{\rm{D}} \bot\, AB\)
Phương pháp giải - Xem chi tiết
- Nếu hai cạnh và góc xen giữa của tam giác này bằng hai cạnh và góc xen giữa của tam giác kia thì hai tam giác đó bằng nhau.
- Tổng số đo hai góc kề bù bằng \(180^o\).
Lời giải chi tiết
a) Xét \(∆AOD\) và \(∆BOD\), ta có:
\(OA = OB\) (gt)
\(\widehat {AO{\rm{D}}} = \widehat {BO{\rm{D}}}\) (vì \(OD\) là tia phân giác góc \(O\))
\(OD\) cạnh chung
\( \Rightarrow ∆AOD = ∆BOD\) (c.g.c)
\( \Rightarrow DA = DB\) (hai cạnh tương ứng)
b) \(∆AOD = ∆BOD\) (chứng minh trên)
\( \Rightarrow \widehat {{D_1}} = \widehat {{D_2}}\) (hai góc tương ứng)
Ta có: \(\widehat {{D_1}} + \widehat {{D_2}} = 180^\circ\) (hai góc kề bù)
\(\Rightarrow \widehat {{D_1}} = \widehat {{D_2}} = 90^\circ \)
Vậy \(O{\rm{D}} \bot \,AB\).
Search google: "từ khóa + timdapan.com" Ví dụ: "Bài 44 trang 143 SBT toán 7 tập 1 timdapan.com"