Giải bài 3.5 trang 55 SGK Toán 8 tập 1 - Kết nối tri thức

Cho hình thang ABCD (AB // CD).


Đề bài

Cho hình thang ABCD (AB // CD). Kẻ đường thẳng vuông góc với AC tại C và đường thẳng vuông góc với BD tại D, hai đường thẳng này cắt nhau tại E. Chứng minh rằng nếu EC = ED thì hình thang ABCD là hình thang cân.

Phương pháp giải - Xem chi tiết

Gọi O là giao điểm của AC và BD.

Chứng minh hai đường chéo AC = BD nên ABCD là hình thang cân.

Lời giải chi tiết

Gọi O là giao điểm của AC và BD.

Xét ∆DOE và ∆COE có:

\(\widehat {O{\rm{D}}E} = \widehat {OC{\rm{E}}} = {90^o}\) (vì OD ⊥ DE; OC ⊥ CE)

EC = ED (giả thiết)

Cạnh OE chung

Do đó ∆DOE = ∆COE (cạnh huyền – cạnh góc vuông).

Suy ra OC = OD (hai cạnh tương ứng).

Do đó tam giác OCD cân tại O nên \(\widehat {{C_1}} = \widehat {{D_1}}\)

Vì ABCD là hình thang nên AB // CD suy ra \(\widehat {{A_1}} = \widehat {{C_1}};\widehat {{B_1}} = \widehat {{D_1}}\) (cặp góc so le trong).

Do đó \(\widehat {{A_1}} = \widehat {{B_1}}\) (vì \(\widehat {{C_1}} = \widehat {{D_1}}\))

Suy ra tam giác OAB cân tại O nên OA = OB.

Do OA = OB, OC = OD nên OA + OC = OB + OD nên AC = BD

Nên ABCD là hình thang cân theo dấu hiệu nhận biết "nếu một hình thang có hai đường chéo bằng nhau thì hình thang đó là hình thang cân".



Bài học liên quan

Từ khóa phổ biến