Giải bài 3.4 trang 37 SGK Toán 10 tập 1 – Kết nối tri thức

Cho góc thỏa mãn Tính giá trị biểu thức:


Đề bài

Cho góc \(\alpha \;\;({0^o} < \alpha  < {180^o})\) thỏa mãn \(\tan \alpha  = 3\)

Tính giá trị biểu thức: \(P = \frac{{2\sin \alpha  - 3\cos \alpha }}{{3\sin \alpha  + 2\cos \alpha }}\)

Phương pháp giải - Xem chi tiết

Chia cả tử và mẫu của P cho \(\cos \alpha\).

Lời giải chi tiết

Vì  \(\tan \alpha  = 3\) nên \(\cos \alpha \ne 0\)

\(\begin{array}{l}
\Rightarrow P = \dfrac{{\frac{{2\sin \alpha - 3\cos \alpha }}{{\cos \alpha }}}}{{\frac{{3\sin \alpha + 2\cos \alpha }}{{\cos \alpha }}}} = \dfrac{{2\frac{{\sin \alpha }}{{\cos \alpha }} - 3}}{{3\frac{{\sin \alpha }}{{\cos \alpha }} + 2}}\\
\Leftrightarrow P = \dfrac{{2\tan \alpha - 3}}{{3\tan \alpha + 2}} = \dfrac{{2.3 - 3}}{{3.3 + 2}} = \dfrac{3}{{11}}.
\end{array}\)

Cách 2: 

Ta có: \(1 + {\tan ^2}\alpha  = \frac{1}{{{{\cos }^2}\alpha }}\quad (\alpha  \ne {90^o})\)

\( \Rightarrow \frac{1}{{{{\cos }^2}\alpha }} = 1 + {3^2} = 10\)

\( \Leftrightarrow {\cos ^2}\alpha  = \frac{1}{{10}} \Leftrightarrow \cos \alpha  =  \pm \frac{{\sqrt {10} }}{{10}}\)

Vì \({0^o} < \alpha  < {180^o}\) nên \(\sin \alpha  > 0\).

Mà \(\tan \alpha  = 3 > 0 \Rightarrow \cos \alpha  > 0 \Rightarrow \cos \alpha  = \frac{{\sqrt {10} }}{{10}}\)

Lại có: \(\sin \alpha  = \cos \alpha .\tan \alpha  = \frac{{\sqrt {10} }}{{10}}.3 = \frac{{3\sqrt {10} }}{{10}}.\)

\( \Rightarrow P = \dfrac{{2.\frac{{3\sqrt {10} }}{{10}} - 3.\frac{{\sqrt {10} }}{{10}}}}{{3.\frac{{3\sqrt {10} }}{{10}} + 2.\frac{{\sqrt {10} }}{{10}}}} = \dfrac{{\frac{{\sqrt {10} }}{{10}}\left( {2.3 - 3} \right)}}{{\frac{{\sqrt {10} }}{{10}}\left( {3.3 + 2} \right)}} = \dfrac{3}{{11}}.\)



Bài học liên quan

Từ khóa phổ biến