Bài 3.26 trang 115 SBT hình học 12

Giải bài 3.26 trang 115 sách bài tập hình học 12. Lập phương trình của mặt phẳng đi qua điểm M(3; -1; -5) đồng thời vuông góc với hai mặt phẳng: ...


Đề bài

Lập phương trình của mặt phẳng \((\alpha )\) đi qua điểm M(3; -1; -5) đồng thời vuông góc với hai mặt phẳng:

\((\beta )\): 3x – 2y + 2z + 7 = 0

\((\gamma )\): 5x – 4y + 3z + 1 = 0

Phương pháp giải - Xem chi tiết

Mặt phẳng \(\left( \alpha  \right)\) vuông góc với hai mặt phẳng \(\left( \beta  \right),\left( \gamma  \right)\) thì \(\overrightarrow {{n_{\left( \alpha  \right)}}}  = \left[ {\overrightarrow {{n_{\left( \beta  \right)}}} ;\overrightarrow {{n_{\left( \gamma  \right)}}} } \right]\).

Lời giải chi tiết

Mặt phẳng \((\beta )\) có VTPT \(\overrightarrow {{n_\beta }}  = (3; - 2;2)\)

Mặt phẳng \((\gamma )\) có VTPT \(\overrightarrow {{n_\gamma }}  = (5; - 4;3)\).

Mặt phẳng \((\alpha )\) vuông góc với hai mặt phẳng \((\beta )\) và \((\gamma )\), do đó 

\(\left\{ \begin{array}{l}
\overrightarrow {{n_\alpha }} \bot \overrightarrow {{n_\beta }} \\
\overrightarrow {{n_\alpha }} \bot \overrightarrow {{n_\gamma }}
\end{array} \right. \Rightarrow \overrightarrow {{n_\alpha }} = \left[ {\overrightarrow {{n_\beta }} ;\overrightarrow {{n_\gamma }} } \right]\)

Suy ra  \(\overrightarrow {{n_\alpha }}  = \left[ {\overrightarrow {{n_\beta }} ,\overrightarrow {{n_\gamma }} } \right] = (2;1; - 2)\)

Mặt khác \((\alpha )\) đi qua điểm M(3; -1; -5) và có vecto pháp tuyến là \(\overrightarrow {{n_\alpha }} \) .

Vậy phương trình của \((\alpha )\) là:  2(x – 3) + 1(y + 1) – 2(z + 5) = 0  hay 2x + y – 2z – 15 = 0.



Từ khóa phổ biến