Giải bài 32 trang 66 sách bài tập toán 9 - Cánh diều tập 1

Áp dụng quy tắc về căn thức bậc hai của một tích và một thương, hãy rút gọn biểu thức: a) \(\sqrt {98{x^2}} .\sqrt {{y^3}} \) với \(x < 0,y \ge 0\) b) \(\sqrt {{x^3}{{\left( {x - 1} \right)}^2}} \) với \(x \ge 1\) c) \(\sqrt {{x^4}} .\sqrt {{{\left( {x - 7} \right)}^2}} \) với \(x > 7\) d) \(\sqrt {\frac{{{x^2}}}{{36 - 12x + {x^2}}}} \) e) \(\frac{{\sqrt {1250{{\left( {x - 5} \right)}^3}} }}{{\sqrt {2{{\left( {x - 5} \right)}^5}} }}\) với \(x < 5\) g) \(\sqrt {\frac{{1 + x - 2\sqrt x }}{{


Đề bài

Áp dụng quy tắc về căn thức bậc hai của một tích và một thương, hãy rút gọn biểu thức:

a) \(\sqrt {98{x^2}} .\sqrt {{y^3}} \) với \(x < 0,y \ge 0\)

b) \(\sqrt {{x^3}{{\left( {x - 1} \right)}^2}} \) với \(x \ge 1\)

c) \(\sqrt {{x^4}} .\sqrt {{{\left( {x - 7} \right)}^2}} \) với \(x > 7\)

d) \(\sqrt {\frac{{{x^2}}}{{36 - 12x + {x^2}}}} \)

e) \(\frac{{\sqrt {1250{{\left( {x - 5} \right)}^3}} }}{{\sqrt {2{{\left( {x - 5} \right)}^5}} }}\) với \(x < 5\)

g) \(\sqrt {\frac{{1 + x - 2\sqrt x }}{{1 + x + 2\sqrt x }}} \)  với \(x \ge 0\)

Phương pháp giải - Xem chi tiết

Áp dụng: \(\sqrt a .\sqrt b  = \sqrt {ab} \) với \(a \ge 0,b \ge 0\); \(\frac{{\sqrt a }}{{\sqrt b }} = \sqrt {\frac{a}{b}} \) với \(a \ge 0,b > 0.\)

Lời giải chi tiết

a) \(\sqrt {98{x^2}} .\sqrt {{y^3}} \)

\(= \sqrt {49.2.{x^2}.{y^2}.y}  = 7.\left| x \right|\sqrt {2y}  =  - 7x\sqrt {2y} \) với \(x < 0,y \ge 0\).

b) \(\sqrt {{x^3}{{\left( {x - 1} \right)}^2}} \)

\(= \sqrt {{{\left[ {x\left( {x - 1} \right)} \right]}^2}.x}  = \left| {x\left( {x - 1} \right)} \right|\sqrt x  = x\left( {x - 1} \right).\sqrt x \) với \(x \ge 1\).

c) \(\sqrt {{x^4}} .\sqrt {{{\left( {x - 7} \right)}^2}} \)

\(= {x^2}.\left| {x - 7} \right| = {x^2}\left( {x - 7} \right)\) với \(x > 7\).

d) \(\sqrt {\frac{{{x^2}}}{{36 - 12x + {x^2}}}} \)

\(= \sqrt {\frac{{{x^2}}}{{{{\left( {6 - x} \right)}^2}}}}  = \left| {\frac{x}{{6 - x}}} \right| = \frac{x}{{x - 6}}\) với \(x > 6\).

e) \(\frac{{\sqrt {1250{{\left( {x - 5} \right)}^3}} }}{{\sqrt {2{{\left( {x - 5} \right)}^5}} }} \)

\(= \sqrt {\frac{{1250{{\left( {x - 5} \right)}^3}}}{{2{{\left( {x - 5} \right)}^5}}}}  = \sqrt {\frac{{625}}{{{{\left( {x - 5} \right)}^2}}}}  = \left| {\frac{{25}}{{x - 5}}} \right| = \frac{{25}}{{5 - x}}\) với \(x < 5\)

g) \(\sqrt {\frac{{1 + x - 2\sqrt x }}{{1 + x + 2\sqrt x }}} \)

\(= \sqrt {\frac{{{{\left( {1 - \sqrt x } \right)}^2}}}{{{{\left( {1 + \sqrt x } \right)}^2}}} = } \frac{{\left| {1 - \sqrt x } \right|}}{{1 + \sqrt x }}\) với \(x \ge 0\).



Bài học liên quan

Từ khóa phổ biến