Giải bài 3.14 trang 56 Chuyên đề học tập Toán 10 - Kết nối tri thức với cuộc sống
Trong mặt phẳng tọa độ Oxy, parabol (P) có phương trình chính tắc và đi qua điểm (M(3;3sqrt 2 )). Tính bán kính qua tiêu của điểm M và khoảng cách từ tiêu điểm tới đường chuẩn của (P).
Đề bài
Trong mặt phẳng tọa độ Oxy, parabol (P) có phương trình chính tắc và đi qua điểm \(M(3;3\sqrt 2 )\). Tính bán kính qua tiêu của điểm M và khoảng cách từ tiêu điểm tới đường chuẩn của (P).
Phương pháp giải - Xem chi tiết
Cho parabol có PTCT: \({y^2} = 2px\)
+ Bán kính qua tiêu của \(M({x_0};{y_0})\): \(MF = {x_0} + \frac{p}{2}\)
+ Tiêu điểm: \(F(\frac{p}{2};0)\)
+ Đường chuẩn: \(\Delta :x = - \frac{p}{2}\)
Lời giải chi tiết
Gọi PTCT của parabol là: \({y^2} = 2px\)
\(M(3;3\sqrt 2 ) \in (P)\) nên \({\left( {3\sqrt 2 } \right)^2} = 2p.3 \Rightarrow p = 3\)
+ Bán kính qua tiêu của \(M(3;3\sqrt 2 )\): \(MF = 3 + \frac{3}{2} = 4,5.\)
+ Tiêu điểm: \(F(\frac{3}{2};0)\)
+ Đường chuẩn: \(\Delta :x = - \frac{3}{2}\)
\( \Rightarrow d(F,\Delta ) = \frac{3}{2} - \left( { - \frac{3}{2}} \right) = 3\)
Search google: "từ khóa + timdapan.com" Ví dụ: "Giải bài 3.14 trang 56 Chuyên đề học tập Toán 10 - Kết nối tri thức với cuộc sống timdapan.com"