Giải bài 3 trang 43 SGK Toán 10 tập 1 – Cánh diều
Vẽ đồ thị của mỗi hàm số sau:
Đề bài
Vẽ đồ thị của mỗi hàm số sau:
a) \(y = 2{x^2} - 6x + 4\)
b) \(y = - 3{x^2} - 6x - 3\)
Phương pháp giải - Xem chi tiết
Bước 1: Xác định tọa độ đỉnh \(\left( {\frac{{ - b}}{{2a}};\frac{{ - \Delta }}{{4a}}} \right)\)
Bước 2: Vẽ trục đối xứng \(x = - \frac{b}{{2a}}\)
Bước 3: Xác định một số điểm đặc biệt, chẳng hạn giao điểm với trục tung (0;c) và trục hoành (nếu có), điểm đối xứng với điểm (0;c) qua trục \(x = - \frac{b}{{2a}}\).
Bước 4: Vẽ đường parabol đi qua các điểm đã xác định ta nhận được đồ thị hàm số \(y = a{x^2} + bx + c\).
Lời giải chi tiết
a) Đồ thị hàm số có đỉnh \(I\left( {\frac{3}{2}; - \frac{1}{2}} \right)\)
Trục đối xứng là \(x = \frac{3}{2}\)
Giao điểm của parabol với trục tung là (0;4)
Giao điểm của parabol với trục hoành là (2;0) và (1;0)
Điểm đối xứng với điểm (0;4) qua trục đối xứng \(x = \frac{3}{2}\) là \(\left( {3;4} \right)\)
Vẽ parabol đi qua các điểm được xác định ở trên, ta nhận được đồ thị hàm số:
b) Đồ thị hàm số có đỉnh \(I\left( { - 1;0} \right)\)
Trục đối xứng là \(x = - 1\)
Giao điểm của parabol với trục tung là (0;-3)
Giao điểm của parabol với trục hoành là \(I\left( { - 1;0} \right)\)
Điểm đối xứng với điểm (0;-3) qua trục đối xứng \(x = - 1\) là (-2;-3)
Vẽ parabol đi qua các điểm được xác định ở trên, ta nhận được đồ thị hàm số:
Search google: "từ khóa + timdapan.com" Ví dụ: "Giải bài 3 trang 43 SGK Toán 10 tập 1 – Cánh diều timdapan.com"