Giải bài 2 trang 9 sách bài tập toán 9 - Cánh diều tập 1

iải các phương trình \(\begin{array}{l}a)\left( {3x + 5} \right)\left( {\frac{{12}}{5} - 2x} \right) = 0\\b){\left( {7x - 1} \right)^2} = 4{\left( {1 - 2x} \right)^2}\\c)\frac{{2{x^2}}}{{4x + 3}} - \frac{{4x - 3}}{8} = 1\\d)\frac{x}{{{x^2} + 4x - 5}} - \frac{2}{{x - 1}} = 0\end{array}\)


Đề bài

Giải các phương trình

a) \(\left( {3x + 5} \right)\left( {\frac{{12}}{5} - 2x} \right) = 0\)

b) \({\left( {7x - 1} \right)^2} = 4{\left( {1 - 2x} \right)^2}\)

c) \(\frac{{2{x^2}}}{{4x + 3}} - \frac{{4x - 3}}{8} = 1\)

d) \(\frac{x}{{{x^2} + 4x - 5}} - \frac{2}{{x - 1}} = 0\)

Phương pháp giải - Xem chi tiết

a)     Áp dụng các bước giải phương trình tích \(\left( {ax + b} \right)\left( {cx + d} \right) = {0^{}}(a \ne 0,c \ne 0):\)

Bước 1: Giải 2 phương trình \(ax + b = 0,cx + d = 0\)

Bước 2: Lấy tất cả các nghiệm của 2 phương trình vừa giải được

b)    Đưa phương trình đã cho về dạng phương trình tích, sau đó làm giải phương trình tích vừa tìm được theo các bước ở ý a.

c), d) Quy đồng, khử mẫu của phương trình.

Lời giải chi tiết

a) \(\left( {3x + 5} \right)\left( {\frac{{12}}{5} - 2x} \right) = 0\)

Để giải phương trình trên, ta giải 2 phương trình sau:

\(\begin{array}{l} + )\,3x - 5 = 0\\3x = 5\\x = \frac{5}{3}\end{array}\)

\(\begin{array}{l} + )\,\frac{{12}}{5} - 2x = 0\\2x = \frac{{12}}{5}\\x = \frac{6}{5}\end{array}\)

Vậy phương trình có 2 nghiệm \(x = \frac{5}{3}\) và \(x = \frac{6}{5}.\)

b) \({\left( {7x - 1} \right)^2} = 4{\left( {1 - 2x} \right)^2}\)

Ta có:

 \(\begin{array}{l}{\left( {7x - 1} \right)^2} = 4{\left( {1 - 2x} \right)^2}\\{\left( {7x - 1} \right)^2} - 4{\left( {1 - 2x} \right)^2} = 0\\\left[ {7x - 1 - 2\left( {1 - 2x} \right)} \right]\left[ {7x - 1 + 2\left( {1 - 2x} \right)} \right] = 0\\\left( {11x - 3} \right)\left( {3x + 1} \right) = 0\end{array}\)

Để giải phương trình trên, ta giải 2 phương trình sau:

\(\begin{array}{l} + )\,11x - 3 = 0\\11x = 3\\x = \frac{3}{{11}}\\ + )\,3x + 1 = 0\\3x =  - 1\\x = \frac{{ - 1}}{3}\end{array}\)

Vậy phương trình có 2 nghiệm \(x = \frac{3}{{11}}\) và \(x = \frac{{ - 1}}{3}.\)

c) \(\frac{{2{x^2}}}{{4x + 3}} - \frac{{4x - 3}}{8} = 1\)

Điều kiện xác định: \(x \ne \frac{{ - 3}}{4}.\)

\(\begin{array}{l}\frac{{2{x^2}}}{{4x + 3}} - \frac{{4x - 3}}{8} = 1\\\frac{{16{x^2}}}{{8\left( {4x + 3} \right)}} - \frac{{\left( {4x - 3} \right)\left( {4x + 3} \right)}}{{8\left( {4x + 3} \right)}} = \frac{{8\left( {4x + 3} \right)}}{{8\left( {4x + 3} \right)}}\\16{x^2} - \left( {4x - 3} \right)\left( {4x + 3} \right) = 8\left( {4x + 3} \right)\\16{x^2} - 16{x^2} + 9 - 32x - 24 = 0\\ - 32x = 15\\x = \frac{{ - 15}}{{32}}\end{array}\)

Vậy phương trình có 2 nghiệm \(x = \frac{{ - 15}}{{32}}.\)

d) \(\frac{x}{{{x^2} + 4x - 5}} - \frac{2}{{x - 1}} = 0\)

Điều kiện xác định: \(x \ne 1,x \ne  - 5\)

\(\begin{array}{l}\frac{x}{{{x^2} + 4x - 5}} - \frac{2}{{x - 1}} = 0\\\frac{x}{{\left( {x - 1} \right)\left( {x + 5} \right)}} - \frac{{2\left( {x + 5} \right)}}{{\left( {x - 1} \right)\left( {x + 5} \right)}} = 0\\x - 2x - 10 = 0\\ - x = 10\\x =  - 10(tm)\end{array}\)

Vậy phương trình có 2 nghiệm \(x =  - 10.\)



Bài học liên quan

Từ khóa phổ biến