Bài 18 trang 52 SBT toán 9 tập 2

Giải bài 18 trang 52 sách bài tập toán 9. Giải các phương trình sau bằng cách biến đổi chúng...


Giải các phương trình sau bằng cách biến đổi chúng thành những phương trình với vế trái là một bình phương còn vế phải là một hằng số:

LG a

\({x^2} - 6x + 5 = 0\)

Phương pháp giải:

+) Thêm bớt để xuất hiện hằng đẳng thức.

+) Sử dụng lý thuyết: \({f^2}\left( x \right) = a > 0 \Leftrightarrow f\left( x \right) =  \pm \sqrt a \)

Lời giải chi tiết:

\({x^2} - 6x + 5 = 0\)

\( \Leftrightarrow {x^2} - 2.3x +9-4= 0 \)

\( \Leftrightarrow {x^2} - 2.3x + 9 = 4 \)

\(\Leftrightarrow {\left( {x - 3} \right)^2} = 4\)

\( \Leftrightarrow x - 3 = 2\) hoặc \(x - 3 =  - 2\)

\(⇔ x = 5 \) hoặc \(x = 1\)

Vậy phương trình có hai nghiệm: \({x_1} = 5;{x_2} = 1\)


LG b

\({x^2} - 3x - 7 = 0\)

Phương pháp giải:

+) Thêm bớt để xuất hiện hằng đẳng thức.

+) Sử dụng lý thuyết: \({f^2}\left( x \right) = a > 0 \Leftrightarrow f\left( x \right) =  \pm \sqrt a \)

Lời giải chi tiết:

\({x^2} - 3x - 7 = 0 \)

\(\Leftrightarrow \displaystyle {x^2} - 3x = 7 \)

\(\Leftrightarrow \displaystyle {x^2} - 2.{3 \over 2}x + {9 \over 4} = 7 + {9 \over 4}\)

\( \Leftrightarrow \displaystyle{\left( {x - {3 \over 2}} \right)^2} = {{37} \over 4}\)

\(\Leftrightarrow \displaystyle x - {3 \over 2} = {{\sqrt {37} } \over 2}\) hoặc \(x - \displaystyle{3 \over 2} =  - {{\sqrt {37} } \over 2}\)

\( \Leftrightarrow \displaystyle x = {{3 + \sqrt {37} } \over 2}\) hoặc \(\displaystyle x = {{3 - \sqrt {37} } \over 2}\)

Vậy phương trình có hai nghiệm: \({x_1} = \displaystyle{\displaystyle{3 + \sqrt {37} } \over 2};{x_2} = {{3 - \sqrt {37} } \over 2}\)


LG c

\(3{x^2} - 12x + 1 = 0\)

Phương pháp giải:

+) Thêm bớt để xuất hiện hằng đẳng thức.

+) Sử dụng lý thuyết: \({f^2}\left( x \right) = a > 0 \Leftrightarrow f\left( x \right) =  \pm \sqrt a \)

Lời giải chi tiết:

\( 3{x^2} - 12x + 1 = 0\)

\( \Leftrightarrow \displaystyle {x^2} - 4x + {1 \over 3} = 0 \) 

\(\Leftrightarrow \displaystyle{x^2} - 4x = - {1 \over 3} \)
\(\Leftrightarrow \displaystyle{x^2} - 2.2x + 4 = 4 - {1 \over 3} \)
\( \Leftrightarrow \displaystyle {\left( {x - 2} \right)^2} = {\displaystyle{11} \over 3} \)

\( \Leftrightarrow\displaystyle  x - 2 = {{\sqrt {33} } \over 3}\) hoặc \(x - 2 =  - \displaystyle {{\sqrt {33} } \over 3}\)

\( \Leftrightarrow \displaystyle x = 2 + {{\sqrt {33} } \over 3}\) hoặc \(x = 2 - \displaystyle {{\sqrt {33} } \over 3}\)

Vậy phương trình có hai nghiệm: \({x_1} = 2 + \displaystyle {{\sqrt {33} } \over 3};{x_2} = 2 - {{\sqrt {33} } \over 3}\)


LG d

\(3{x^2} - 6x + 5 = 0\).

Phương pháp giải:

+) Thêm bớt để xuất hiện hằng đẳng thức.

+) Sử dụng lý thuyết: \({f^2}\left( x \right) = a > 0 \Leftrightarrow f\left( x \right) =  \pm \sqrt a \)

Lời giải chi tiết:

\( 3{x^2} - 6x + 5 = 0 \)

\(\Leftrightarrow {x^2} - 2x + \displaystyle {5 \over 3} = 0 \) 

\(\Leftrightarrow {x^2} - 2x =- \displaystyle {5 \over 3}  \) 

\(\Leftrightarrow {x^2} - 2x + 1 = 1 -\displaystyle {5 \over 3} \) 
\( \Leftrightarrow {\left( {x - 1} \right)^2} = -\displaystyle {2 \over 3} \)

Vế trái \({\left( {x - 1} \right)^2} \ge 0\); vế phải \( -\displaystyle{2 \over 3} < 0\)

Vậy không có giá trị nào của \(x\) để \({\left( {x - 1} \right)^2} =  - \displaystyle {2 \over 3}\)

Phương trình vô nghiệm.