Bài 12.2 phần bài tập bổ sung trang 99 SBT Toán 8 tập 1

Giải bài 12.2 phần bài tập bổ sung trang 99 sách bài tập toán 8. Cho hình thoi ABCD, O là giao điểm của hai đường chéo. Các tia phân giác của bốn góc vuông có đỉnh O cắt các cạnh AB, BC, CD, DA ...


Đề bài

Cho hình thoi \(ABCD,\) \(O\) là giao điểm của hai đường chéo. Các tia phân giác của bốn góc vuông có đỉnh \(O\) cắt các cạnh \(AB,\, BC,\, CD,\, DA\) theo thứ tự ở \(E,\, F,\, G,\, H.\) Tứ giác \(EFGH\) là hình gì?

Phương pháp giải - Xem chi tiết

Vận dụng kiến thức :

- Tứ giác có hai đường chéo bằng nhau và cắt nhau tại trung điểm của mỗi đường là hình chữ nhật.

- Hình chữ nhật có hai đường chéo vuông góc với nhau là hình vuông.

Lời giải chi tiết

Ta có: \(\widehat {AOB}\) và \(\widehat {COD}\) đối đỉnh nên \(E,\, O,\, G\) thẳng hàng 

\(\widehat {BOC}\)và \(\widehat {AOD}\) đối đỉnh nên \(F,\, O,\, H\) thẳng hàng

Xét \(∆ BEO\) và \(∆ BFO:\)

\(\widehat {EBO} = \widehat {FBO}\) (tính chất hình thoi)

\(OB\) cạnh chung

\(\widehat {EOB} = \widehat {FOB} = {45^0}\) (gt)

Do đó: \(∆ BEO = ∆ BFO\, (g.c.g)\)

\(⇒ OE = OF\) (1)

Xét \(∆ BEO\) và \(∆ DGO:\)

\(\widehat {EBO} = \widehat {GDO}\) (so le trong)

\(OB = OD\) (tính chất hình thoi)

\(\widehat {EOB} = \widehat {GOD}\) (đối đỉnh)

Do đó: \(∆ BEO = ∆ DGO\, (g.c.g)\

\(⇒ OE = OG\) (2)

Xét \(∆ AEO\) và \(∆ AHO:\)

\(\widehat {EAO} = \widehat {HAO}\) (tính chất hình thoi)

\(OA\) cạnh chung

\(\widehat {EOA} = \widehat {HOA} = {45^0}\) (gt)

Do đó: \(∆ AEO = ∆ AHO\, (g.c.g)\)

\(⇒ OE = OH\) (3)

Từ (1), (2) và (3) suy ra: \(OE = OF = OG = OH\) hay \(EG = FH\)

nên tứ giác \(EFGH\) là hình chữ nhật (vì có hai đường chéo cắt nhau tại trung điểm mỗi đường và bằng nhau)

\(OE ⊥ OF\) (tính chất hai góc kề bù)

hay \(EG ⊥ FH\)

Vậy hình chữ nhật \(EFGH\) là hình vuông.



Từ khóa phổ biến