Bài 111 trang 28 SBT toán 7 tập 1

Giải bài 111 trang 28 sách bài tập toán 7 tập 1. Trong các số sau, số nào bằng 3/7?


Đề bài

Trong các số sau, số nào bằng \(\displaystyle {3 \over 7}\)?

\(\displaystyle a= {{39} \over {91}}\)  

\(\displaystyle  b = \sqrt {{{{3^2}} \over {{7^2}}}} \)

\(\displaystyle  c = {{\sqrt {{3^2}}  + \sqrt {{{39}^2}} } \over {\sqrt {{7^2}}  + \sqrt {{{91}^2}} }}\)

\(\displaystyle d= {{\sqrt {{3^2}}  - \sqrt {{{39}^2}} } \over {\sqrt {{7^2}}  - \sqrt {{{91}^2}} }}\)

Phương pháp giải - Xem chi tiết

- Căn bậc hai của một số \(a\) không âm là số \(x\) sao cho \(x^{2}=a.\)

- Tính chất của phân số:

\(\dfrac{A}{B} = \dfrac{{A:C}}{{B:C}}\,\,\left( {B,C \ne 0} \right)\)

Lời giải chi tiết

Tất cả các số đều bằng \(\displaystyle {3 \over 7}\)

\(\displaystyle a= {{39} \over {91}} = {{39:13} \over {91:13}} = {3 \over 7}\) 

\(\displaystyle b = \sqrt {{{{3^2}} \over {{7^2}}}}  = \sqrt {{{\left( {{3 \over 7}} \right)}^2}}  = {3 \over 7}\) 

\(\displaystyle c = {{\sqrt {{3^2}}  + \sqrt {{{39}^2}} } \over {\sqrt {{7^2}}  + \sqrt {{{91}^2}} }} = {{3 + 39} \over {7 + 91}} = {{42} \over {98}}\)\(\, \displaystyle = {{42:14} \over {98:14}} = {3 \over 7}\) 

\(\displaystyle d = {{\sqrt {{3^2}}  - \sqrt {{{39}^2}} } \over {\sqrt {{7^2}}  - \sqrt {{{91}^2}} }} = {{3 - 39} \over {7 - 91}} = {{ - 36} \over { - 84}} \)\(\,\displaystyle = {{ - 36:( - 12)} \over { - 84:( - 12)}} = {3 \over 7}\) 



Từ khóa phổ biến