Đề kiểm tra 15 phút - Đề số 3 - Bài 4 - Chương 4 - Đại số 9

Giải Đề kiểm tra 15 phút - Đề số 3 - Bài 4 - Chương 4 - Đại số 9


Đề bài

Bài 1: Chứng minh rằng phương trình \({x^2} -  - 2 = 0\) luôn luôn có hai nghiệm phân biệt với mọi a.

Bài 2: Tìm m để đồ thị hai hàm số \(y = {x^2}\) và \(y = 2mx + 4\) cắt nhau tại hai điểm phân biệt.

Bài 3: Tìm giá trị lớn nhất của biểu thức \(y =  - {x^2} + 4x + 3.\)

Lời giải chi tiết

Bài  1: Ta có : \(\Delta  = {a^2} + 8 > 0\), với mọi a ( vì \({a^2} \ge 0\), với mọi a). Vậy phương trình luôn có hai nghiệm phân biệt.

Bài  2: Xét phương trình hoành độ giao điểm của hai đồ thị ( nếu có) :

\({x^2} = 2mx + 4 \Leftrightarrow {x^2} - 2mx - 4 = 0\) (*)

Hai đồ thị cắt nhau tại hai điểm phân biệt khi và chỉ khi phương trình (*) có hai nghiệm phân biệt \( \Leftrightarrow \Delta  > 0 \Leftrightarrow 4{m^2} + 16 > 0\) ( luôn đúng với mọi ).

Bài 3: Ta có : \(y =  - {x^2} = 4x + 3 \)\(\;\Leftrightarrow {x^2} - 4x + y - 3 = 0\)

Ta xem đây là phương trình bậc hai của x và y là tham số.

Phương trình có nghiệm \( \Leftrightarrow \Delta  \ge 0\)\(\; \Leftrightarrow 16 - 4\left( {y - 3} \right) \ge 0\)

\( \Leftrightarrow 28 - 4y \ge 0 \Leftrightarrow y \le 7.\)

Vậy giá trị lớn nhất của y bằng 7. Dấu “=” xảy ra khi và chỉ khi :

\({x^2} - 4x + 7 - 3 = 0 \)\(\;\Leftrightarrow {x^2} - 4x + 4 = 0 \Leftrightarrow x = 2.\)

 



Bài giải liên quan

Từ khóa phổ biến