Bài 8 trang 62 SGK Hình học 10

Giải bài 8 trang 62 SGK Hình học 10. Cho tam giác ABC. Chứng minh rằng:


Cho tam giác \(ABC\). Chứng minh rằng:

LG a

Góc \(A\) nhọn khi và chỉ khi \({a^2} < {b^2} + {c^2}\)

Lời giải chi tiết:

Theo hệ quả định lí cosin: \({\mathop{\rm cosA}\nolimits}  = {{{b^2} + {c^2} - {a^2}} \over {2bc}}\). Khi đó:

\({a^2} < {b^2} + {c^2} \Leftrightarrow {b^2} + {c^2} - {a^2} > 0\)\( \Leftrightarrow \cos A > 0\)

Mặt khác theo định nghĩa cosin ta thấy \(\cos A > 0\) khi và chỉ khi \(A\) là góc nhọn.

Vậy góc \(A\) nhọn khi và chỉ khi \({a^2} < {b^2} + {c^2}\)


LG b

Góc \(A\) tù khi và chỉ khi \({a^2} > {b^2} + {c^2}\)

Lời giải chi tiết:

\({a^2} > {b^2} + {c^2} \Leftrightarrow {b^2} + {c^2} - {a^2} < 0 \)\(\Leftrightarrow \cos A < 0\)

Mặt khác theo định nghĩa cosin ta thấy \(\cos A < 0\) khi và chỉ khi \(A\) là góc tù.

Vậy góc \(A\) tù khi và chỉ khi \({a^2} > {b^2} + {c^2}\)


LG c

Góc \(A\) vuông khi và chỉ khi \({a^2} = {b^2} + {c^2}\)

Lời giải chi tiết:

Theo định lí Py-ta-go thì: \({a^2} = {b^2} + {c^2} \Leftrightarrow \) góc \(A\) là góc vuông.



Từ khóa phổ biến