Câu 3.4 trang 86 sách bài tập Đại số và Giải tích 11 Nâng cao

Cho n là một số nguyên dương. Chứng minh rằng


Cho n là một số nguyên dương. Chứng minh rằng

LG a

\(n\left( {2{n^2} - 3n + 1} \right)\) chia hết cho 6

Lời giải chi tiết:

Bằng phương pháp quy nạp, ta sẽ chứng minh

                                \(n\left( {2{n^2} - 3n + 1} \right) \vdots \,6\)                     (1)

Với mọi \(n \in N^*\)

Với \(n = 1,\) ta có \(n\left( {2{n^2} - 3n + 1} \right) = 0.\) Hiển nhiên \(0\; \vdots\; 6,\) và vì thế (1) đúng khi \(n = 1\)

Giả sử đã có (1) đúng khi \(n = k,k \in {N^ * }\), tức là \(k\left( {2{k^2} - 3k + 1} \right) \;\vdots \;6,\) ta sẽ chứng minh nó cũng đúng khi \(n = k + 1\)

Thật vậy, do \(\left( {k + 1} \right)\left[ {2{{\left( {k + 1} \right)}^2} - 3\left( {k + 1} \right) + 1} \right] \)

\(= k\left( {2{k^2} - 3k + 1} \right) + 6{k^2}\) nên từ gải thiết quy nạp suy ra \(\left( {k + 1} \right)\left[ {2{{\left( {k + 1} \right)}^2} - 3\left( {k + 1} \right) + 1} \right] \;\vdots\; 6,\) nghĩa là (1) đúng khi \(n = k + 1\)

Từ các chứng minh trên suy ra (1)  đúng với mọi \(n \in N^*.\)


LG b

 \({11^{n + 1}} + {12^{2n - 1}}\) chia hết cho 133


Lời giải chi tiết:

Ta sẽ chứng minh

             \({11^{n + 1}} + {12^{2n - 1}}\; \vdots \;133\)                           (2)

Với mọi \(n \in N^*,\) bằng phương pháp quy nạp.

Với \(n = 1,\) ta có \({11^{n + 1}} + {12^{2n - 1}} = {11^2} + 12 = 133.\) Vì thế (2) đúng khi \(n = 1.\)

Giả sử đã có (2) đúng khi \(n = k,k \in N^*,\) ta sẽ chứng minh nó cũng đúng khi \(n = k + 1\)

Thật vậy ta có

\(\eqalign{
& {11^{(k + 1) + 1}} + {12^{2(k + 1) - 1}}\cr& = 11.\left( {{{11}^{k + 1}} + {{12}^{2k - 1}}} \right) + {12^{2k - 1}}.({12^2} - 11) \cr 
& = 11.\left( {{{11}^{k + 1}} + {{12}^{2k - 1}}} \right) + {133.12^{2k - 1}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(3) \cr} \)

Mà \({11^{k + 1}} + {12^{2k - 1}}\; \vdots \;133\) (theo giả thiết quy nạp) nên từ (3) suy ra

                                \({11^{(k + 1) + 1}} + {12^{2(k + 1) - 1}} \;\vdots \;133\)

Nghĩa là (2) đúng khi \(n = k + 1\)

Từ các chứng minh trên suy ra (2) đúng với mọi \(n \in N^*\)



Từ khóa phổ biến