Bài 9.30 trang 98 SGK Toán 11 tập 2 - Kết nối tri thức

Viết phương trình tiếp tuyến của đồ thị hàm số \(y = {x^3} + 3{x^2} - 1\) tại điểm có hoành độ bằng 1.


Đề bài

Viết phương trình tiếp tuyến của đồ thị hàm số \(y = {x^3} + 3{x^2} - 1\) tại điểm có hoành độ bằng 1.

Phương pháp giải - Xem chi tiết

Nếu hàm số \(y = f\left( x \right)\) có đạo hàm tại điểm \({x_0}\) thì phương trình tiếp tuyến của đồ thị hàm số tại điểm \(P\left( {{x_0};{y_0}} \right)\) là \(y - {y_0} = f'\left( {{x_0}} \right)\left( {x - {x_0}} \right),\) trong đó \({y_0} = f\left( {{x_0}} \right)\)

Lời giải chi tiết

Ta có \(y' = 3{x^2} + 6x \Rightarrow \) \(y'\left( 1 \right) = 9\)

Ngoài ra , \(f\left( 1 \right) = 3\) nên phương trình tiếp tuyến cần tìm là:

\(y - 3 = 9\left( {x - 1} \right)\) hay \(y = 9x - 6\)



Bài học liên quan

Từ khóa phổ biến