Bài 85 trang 156 SGK Đại số 10 nâng cao

Giải các bất phương trình sau:


Giải các bất phương trình sau:

LG a

\(\sqrt {{x^2} - 4x - 12}  \le x - 4\)

Giải chi tiết:

Ta có:

\(\eqalign{
& \sqrt {{x^2} - 4x - 12} \le x - 4 \cr&\Leftrightarrow \left\{ \matrix{
{x^2} - 4x - 12 \ge 0 \hfill \cr 
x - 4 \le 0 \hfill \cr 
{x^2} - 4x - 12 \le {(x - 4)^2} \hfill \cr} \right. \cr 
& \Leftrightarrow \left\{ \matrix{
\left[ \matrix{
x \le - 2 \hfill \cr 
x \ge 6 \hfill \cr} \right. \hfill \cr 
x \ge 4 \hfill \cr 
4x \le 28 \hfill \cr} \right. \Leftrightarrow 6 \le x \le 7 \cr} \)

Vậy \(S = [6, 7]\)


LG b

\((x - 2)\sqrt {{x^2} + 4}  \le {x^2} - 4\)

Giải chi tiết:

Ta có:

\((x - 2)\sqrt {{x^2} + 4}  \le {x^2} - 4\)

\(\Leftrightarrow (x - 2)(\sqrt {{x^2} + 4}  - x - 2) \le 0\)

 + Với x = 2 là nghiệm của bất phương trình

+ Với x > 2, ta có:

\((x - 2)\sqrt {{x^2} + 4}  \le {x^2} - 4 \)

\(\Leftrightarrow {x^2} + 4 \le {(x + 2)^2} \Leftrightarrow x \ge 0\)

Kết hợp với điều kiện, ta có: x > 2.

+ Với x < 2, ta có:

\(\eqalign{
& (x - 2)\sqrt {{x^2} + 4} \le {x^2} - 4 \cr&\Leftrightarrow \left[ \matrix{
x + 2 > 0 \hfill \cr 
\left\{ \matrix{
x + 2 \ge 0 \hfill \cr 
{x^2} + 4 \ge {(x + 2)^2} \hfill \cr} \right. \hfill \cr} \right. \cr 
& \Leftrightarrow \left[ \matrix{
x < - 2 \hfill \cr 
\left\{ \matrix{
x \ge - 2 \hfill \cr 
x \le 0 \hfill \cr} \right. \hfill \cr} \right. \Leftrightarrow x \le 0 \cr} \)

Vậy \(S = (-∞, 0] ∪ [2, +∞)\)


LG c

\(\sqrt {{x^2} - 8x}  \ge 2(x + 1)\)

Giải chi tiết:

Bất phương trình đã cho tương đương với:

\((I) \Leftrightarrow \left\{ \matrix{
{x^2} - 8x \ge 0 \hfill \cr 
x + 1 < 0 \hfill \cr} \right.\)

hoặc

\((II) \Leftrightarrow \left\{ \matrix{
x + 1 \ge 0 \hfill \cr 
{x^2} - 8x \ge 4{(x + 1)^2} \hfill \cr} \right.\) 

Ta có:

\(\eqalign{
& (I) \Leftrightarrow \left\{ \matrix{
\left[ \matrix{
x \le 0 \hfill \cr 
x \ge 8 \hfill \cr} \right. \hfill \cr 
x < - 1 \hfill \cr} \right. \Leftrightarrow x < - 1 \cr 
& (II)\, \Leftrightarrow \left\{ \matrix{
x \ge - 1 \hfill \cr 
3{x^2} + 16x + 4 \le 0 \hfill \cr} \right.\cr& \Leftrightarrow \left\{ \matrix{
x \ge - 1 \hfill \cr 
{{ - 8 - 2\sqrt {13} } \over 3} \le x \le {{ - 8 + 2\sqrt {13} } \over 3} \hfill \cr} \right. \cr&\Leftrightarrow - 1 \le x \le {{ - 8 + 2\sqrt {13} } \over 3} \cr} \)

Tập nghiệm của bất phương trình đã cho là:

\(S = ( - \infty , - 1) \cup {\rm{[}} - 1,\,{{2\sqrt {13}  - 8} \over 3}{\rm{]}} = ( - \infty ,{{2\sqrt {13}  - 8} \over 3}{\rm{]}}\) 


LG d

\(\sqrt {x(x + 3)}  \le 6 - {x^2} - 3x\)

Giải chi tiết:

Đặt \(t = \sqrt {x(x + 3)} \,\,\,(t \ge 0)\)

⇒ x2 + 3x = t2 ⇔ t2 + t - 6 ≤ 0 ⇔  -3 ≤ t ≤ 2

Kết hợp với điều kiện: 0 ≤ t ≤ 2  ⇔  0 ≤ x2 + 3x ≤ 4

\( \Leftrightarrow \left\{ \matrix{
{x^2} + 3x \ge 0 \hfill \cr 
{x^2} + 3x - 4 \le 0 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
\left[ \matrix{
x \le - 3 \hfill \cr 
x \ge 0 \hfill \cr} \right. \hfill \cr 
- 4 \le x \le 1 \hfill \cr} \right. \)

\(\Leftrightarrow \left[ \matrix{
- 4 \le x \le -3 \hfill \cr 
0 \le x \le 1 \hfill \cr} \right.\)

Vậy \(S  = [-4, -3] ∪ [0, 1]\)