Bài 8.20 trang 79 SGK Toán 11 tập 2 - Kết nối tri thức
Xác suất để chọn được học sinh không thích cả bóng chuyền và bóng rổ là
Đề bài
Xác suất để chọn được học sinh không thích cả bóng chuyền và bóng rổ là
A. \(\frac{{18}}{{40}}.\)
B. \(\frac{{14}}{{40}}.\)
C. \(\frac{{19}}{{40}}.\)
D. \(\frac{{21}}{{40}}.\)
Phương pháp giải - Xem chi tiết
Công thức cộng xác suất \(P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right) - P\left( {AB} \right)\)
Công thức xác suất của biến cố đối \(P\left( A \right) = 1 - P\left( {\overline A } \right)\)
Lời giải chi tiết
Số học sinh thích cả bóng chuyền và bóng rổ là: 23 + 18 – 26 = 15 (học sinh)
Gọi A là biến cố “Học sinh thích bóng chuyền”; B là biến cố “Học sinh thích bóng rổ”; E là biến cố “Học sinh không thích cả bóng chuyền và bóng rổ”.
Khi đó \(\overline E \) là biến cố “Học sinh thích bóng chuyền hoặc bóng rổ”.
Ta có \(\overline E = A \cup B.\)
\(P\left( A \right) = \frac{{23}}{{40}},P\left( B \right) = \frac{{18}}{{40}} = \frac{9}{{20}},P\left( {AB} \right) = \frac{{15}}{{40}} = \frac{3}{8}\)
\(\begin{array}{l}P\left( {\overline E } \right) = P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right) - P\left( {AB} \right) = \frac{{23}}{{40}} + \frac{9}{{20}} - \frac{3}{8} = \frac{{13}}{{20}}\\ \Rightarrow P\left( E \right) = 1 - P\left( {\overline E } \right) = 1 - \frac{{13}}{{20}} = \frac{7}{{20}}\end{array}\)
Vậy xác suất để chọn được học sinh không thích cả bóng chuyền và bóng rổ là \(\frac{7}{{20}} = \frac{{14}}{{40}}\)
Đáp án B.
Search google: "từ khóa + timdapan.com" Ví dụ: "Bài 8.20 trang 79 SGK Toán 11 tập 2 - Kết nối tri thức timdapan.com"