Bài 8 trang 74 Tài liệu dạy – học Toán 9 tập 1

Giải bài tập Cho hình thang cân ABCD có đáy lớn AB = 15 cm, đáy nhỏ CD = 5 cm và góc A bằng


Đề bài

Cho hình thang cân ABCD có đáy lớn AB = 15 cm, đáy nhỏ CD = 5 cm và góc A bằng \({60^o}\).

a) Tính cạnh BC.

b) Gọi M, N lần lượt là trung điểm của AB và CD. Tính MN.

Phương pháp giải - Xem chi tiết

Kẻ DE và CF vuông góc với AB (E,F thuộc AB) tạo thành hình chữ nhật CDEF từ đó tính được BF. Sử dụng các hệ thức lượng giác để tính được BC và MN.

Lời giải chi tiết

a) Tính cạnh BC.

Kẻ DE và CF vuông góc với AB (E,F thuộc AB) tạo thành hình chữ nhật CDEF có CD = 5 cm.

\( \Rightarrow \) CD = EF = 5 cm

Ta có: \(\Delta \)ADE = \(\Delta \)BCF (ch-gn) \( \Rightarrow \) AE = BF

Ta có: AB = AE + EF + BF hay 15 = BF + 5 + BF\( \Rightarrow \) BF = 5 cm

Xét \(\Delta \)BCF vuông tại F, ta có:

\(\cos \left( {\widehat B} \right) = \dfrac{{BF}}{{BC}}\)

\(\Rightarrow BC = \dfrac{{BF}}{{\cos \left( {\widehat B} \right)}} = \dfrac{5}{{\cos {{60}^o}}} = 10\)(cm)

b) Gọi M, N lần lượt là trung điểm của AB và CD. Tính MN.

Xét \(\Delta \) BCF vuông tại F, ta có:

\(\sin \left( {\widehat B} \right) = \dfrac{{CF}}{{BC}} \)

\(\Rightarrow CF = BC.\sin \left( {\widehat B} \right) = 10.\sin {60^o} \)\(\,= 5\sqrt 3 \) (cm)

Vì CDEF là hình chữ nhật nên DE = CF  mà M, N lần lượt là trung điểm của AB và CD

\( \Rightarrow  MN = DE = CF = 5\sqrt 3 \) cm



Bài học liên quan

Từ khóa phổ biến