Bài 2 trang 74 Tài liệu dạy – học Toán 9 tập 1

Giải bài tập Cho tam giác ABC vuông tại A có AC = 5 cm, AB = 4 cm. Tính :


Đề bài

Cho tam giác ABC vuông tại A có AC = 5 cm, AB = 4 cm. Tính :

a) Cạnh huyền BC.

b) Hình chiếu của AB và AC trên cạnh huyền.

c) Đường cao AH.

Phương pháp giải - Xem chi tiết

Áp dụng định lý Pythagore và hệ thức lượng trong tam giác vuông để tính.

Lời giải chi tiết

a) Cạnh huyền BC.

Áp dụng định lý Pythagore: \(B{C^2} = A{B^2} + A{C^2} = {5^2} + {4^2} = 41\)

\(\Rightarrow BC = \sqrt {41} \)cm

b) Hình chiếu của AB và AC trên cạnh huyền.

Gọi hình chiếu của A trên BC là H \( \Rightarrow \) AH là đường cao trong tam giác ABC, BH và CH lần lượt là hình chiếu của AB và AC trên cạnh huyền

Áp dụng hệ thức lượng trong tam giác vuông ABC đường cao AH:

\(A{B^2} = BH.BC \)

\(\Rightarrow BH = \dfrac{{A{B^2}}}{{BC}} = \dfrac{{{4^2}}}{{\sqrt {41} }} = \dfrac{{16}}{{\sqrt {41} }}\)(cm)

\(CH = BC - BH = \sqrt {41}  - \dfrac{{16}}{{\sqrt {41} }} \)\(\,= \dfrac{{25}}{{\sqrt {41} }}\)(cm)

c) Đường cao AH.

Áp dụng hệ thức lượng trong tam giác vuông ABC đường cao AH:

\(AH.BC = AB.AC \)

\(\Rightarrow AH = \dfrac{{AB.AC}}{{BC}} = \dfrac{{4.5}}{{\sqrt {41} }} = \dfrac{{20}}{{\sqrt {41} }}\)(cm)



Bài học liên quan

Từ khóa phổ biến