Bài 8 trang 14 Sách giáo khoa (SGK) Hình học 10 Nâng cao

Cho bốn điểm bất kì M, N, P, Q. Chứng minh các đẳng thức sau


Cho bốn điểm bất kì \(M, N, P, Q\). Chứng minh các đẳng thức sau

LG a

\(\overrightarrow {PQ}  + \overrightarrow {NP}  + \overrightarrow {MN}  = \overrightarrow {MQ} \)

Giải chi tiết:

\(\overrightarrow {PQ}  + \overrightarrow {NP}  + \overrightarrow {MN}  = (\overrightarrow {MN}  + \overrightarrow {NP} ) + \overrightarrow {PQ}  = \overrightarrow {MP}  + \overrightarrow {PQ}  = \overrightarrow {MQ} \)


LG b

\(\overrightarrow {NP}  + \overrightarrow {MN}  = \overrightarrow {QP}  + \overrightarrow {MQ} \)

Giải chi tiết:

\(\overrightarrow {NP}  + \overrightarrow {MN}  = (\overrightarrow {NQ}  + \overrightarrow {QP} ) + (\overrightarrow {MQ}  + \overrightarrow {QN} ) = \,\overrightarrow {QP}  + \overrightarrow {MQ}  + \overrightarrow {NQ}  + \overrightarrow {QN}  = \overrightarrow {QP}  + \overrightarrow {MQ} \) ( vì \(\overrightarrow {NQ}  + \overrightarrow {QN}  = \overrightarrow 0 \) )


LG c

 \(\overrightarrow {MN}  + \overrightarrow {PQ}  = \overrightarrow {MQ}  + \overrightarrow {PN} \)

Giải chi tiết:

 \(\overrightarrow {MN}  + \overrightarrow {PQ}  = (\overrightarrow {MQ}  + \overrightarrow {QN} ) + (\overrightarrow {PN}  + \overrightarrow {NQ} ) = \overrightarrow {MQ}  + \overrightarrow {PN}  + \overrightarrow {QN}  + \overrightarrow {NQ}  = \overrightarrow {MQ}  + \overrightarrow {PN} \) ( vì \(\overrightarrow {QN}  + \overrightarrow {NQ}  = \overrightarrow 0 \))