Bài 65 trang 124 SGK giải tích 12 nâng cao
Trên mặt mỗi chiếc radio đều có các vạch chia để người sử dụng dẽ dàng chọn đúng sóng Radio cần tìm. Biết rằng vạch chia ở vị trí cách vạch tận cùng bên trái một khoảng d (cm) thì ứng tần số , trong đó k và a là hai hằng số được chọn sao cho vạch tận cùng trên trái ứng với tần số 53 kHz, vạch tận cùng bên phải ứng với tần số 160 kHz, và hai vạch này cách nhau 12 cm.
Trên mặt mỗi chiếc radio đều có các vạch chia để người sử dụng dẽ dàng chọn đúng sóng
Radio cần tìm. Biết rằng vạch chia ở vị trí cách vạch tận cùng bên trái một khoảng d (cm) thì ứng tần số \(F = k{a^{d\,}}\,\,\left( {kHz} \right)\), trong đó k và a là hai hằng số được chọn sao cho vạch tận cùng trên trái ứng với tần số 53 kHz, vạch tận cùng bên phải ứng với tần số 160 kHz, và hai vạch này cách nhau 12 cm.
LG a
Hãy tính k và a (tính a chính xác đến hàng phần nghìn).
Giải chi tiết:
Ta có với d = 0 thì F = 53 do đó \(53 = k.{a^o} \Rightarrow k = 53\)
Với d = 12 thì F =160 đo đó \(160 = k.{a^{12}} = 53.{a^{12}} \Rightarrow a = \root {12} \of {{{160} \over {53}}} \approx 1,096\)
LG b
Giả sử đã cho F, hãy giải phương trình \(F = k{a^{d\,}}\)với ẩn d.
Giải chi tiết:
\(k{a^d} = F \Leftrightarrow {a^d} = {F \over k} \Leftrightarrow d = {\log _a}\left( {\log F - \log k} \right) \approx 25,119\log F - 43,312\)
LG c
Áp dụng kết quả của b), hãy điền vào ô trống trong bảng sau (kết quả tính chính xác đến hàng phần trăm).
F |
53 |
60 |
80 |
100 |
120 |
140 |
160 |
d |
|
|
|
|
|
|
|
Giải chi tiết:
F |
53 |
60 |
80 |
100 |
120 |
140 |
160 |
d |
0 |
1,35 |
4,49 |
6,93 |
8,91 |
10,60 |
12 |
Search google: "từ khóa + timdapan.com" Ví dụ: "Bài 65 trang 124 SGK giải tích 12 nâng cao timdapan.com"