Bài 6 trang 190 SGK Giải tích 12 nâng cao
Chứng minh rằng: a) Phần thực của số phức z bằng...
Chứng minh rằng:
LG a
Phần thực của số phức z bằng \({1 \over 2}\left( {z + \overline z } \right)\), phần ảo của số phức z bằng \({1 \over {2i}}\left( {z - \overline z } \right);\)
Giải chi tiết:
Giả sử \(z=a+bi\;(a,b\in\mathbb R)\) thì \(\overline z = a - bi\)
Từ đó suy ra \(a = {1 \over 2}\left( {z + \overline z } \right);\,\,b = {1 \over {2i}}\left( {z - \overline z } \right)\)
LG b
Số phức z là số ảo khi và chỉ khi \(z = - \overline z ;\)
Giải chi tiết:
z là số ảo khi và chỉ khi phần thực của z bằng 0
\(\Leftrightarrow {1 \over 2}\left( {z + \overline z } \right) = 0 \Leftrightarrow z = - \overline z \)
LG c
Với mọi số phức z, z', ta có \(\overline {z + z'} = \overline z + \overline {z'} ,\,\overline {zz'} = \overline z .\,\overline {z'} \), và nếu \(z \ne 0\) thì \({{\overline {z'} } \over {\overline z }} = \overline {\left( {{{z'} \over z}} \right)} \).
Giải chi tiết:
Giả sử \(z=a+bi;\; z'=a'+b'i\) \((a,b,a',b'\in\mathbb R)\)
Ta có:
\(\eqalign{
& \overline {z + z'} = \overline {(a + a') + (b + b')i} = a + a' - (b + b')i \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = a - bi + a' - b'i = \overline z + \overline {z'} \cr
& \overline {z.z'} = \overline {\left( {a + bi} \right).\left( {a' + b'i} \right)} = \overline {\left( {aa' - bb'} \right) + \left( {ab' + a'b} \right)i} \cr
& \,\,\,\,\,\,\,\,\,\, = aa' - bb' - \left( {ab' + a'b} \right)i \cr
& \,\,\,\,\,\,\,\,\,\, = \left( {a - bi} \right)\left( {a' - b'i} \right) = \overline z .\overline {z'} \cr
& \overline {\left( {{{z'} \over z}} \right)} = \overline {\left( {{{z'.\overline z } \over {z.\overline z }}} \right)} = {1 \over {z.\overline z }}.\overline {z'} .\overline {\overline z } = {1 \over {z.\overline z }}.\overline {z'} .z = {{\overline {z'} } \over {\overline z }} \cr} \)
Search google: "từ khóa + timdapan.com" Ví dụ: "Bài 6 trang 190 SGK Giải tích 12 nâng cao timdapan.com"