Bài 13 trang 191 SGK Đại số và Giải tích 12 Nâng cao

Giải các phương trình sau (với ẩn z)


Giải các phương trình sau (với ẩn z)

LG a

\(iz + 2 - i = 0\);

Giải chi tiết:

\(iz + 2 - i = 0 \Leftrightarrow iz = i - 2 \Leftrightarrow z = {{ - 2 + i} \over i} = {{\left( { - 2 + i} \right)i} \over { - 1}} \Leftrightarrow z = 1 + 2i\)


LG b

\(\left( {2 + 3i} \right)z = z - 1\);

Giải chi tiết:

\(\left( {2 + 3i} \right)z = z - 1 \Leftrightarrow \left( {1 + 3i} \right)z =  - 1\)

                              \( \Leftrightarrow z = {{ - 1} \over {1 + 3i}} = {{ - 1 + 3i} \over {\left( {1 + 3i} \right)\left( {1 - 3i} \right)}} = {{ - 1 + 3i} \over {10}} =  - {1 \over {10}} + {3 \over {10}}i\)


LG c

\(\left( {2 - i} \right)\overline z  - 4 = 0\);

Giải chi tiết:

\(\left( {2 - i} \right)\overline z  - 4 = 0 \Leftrightarrow \left( {2 + i} \right)z = 4 \Leftrightarrow z = {4 \over {2 + i}} = {{4\left( {2 - i} \right)} \over 5} \Leftrightarrow z = {8 \over 5} - {4 \over 5}i\)


LG d

\(\left( {iz - 1} \right)\left( {z + 3i} \right)\left( {\overline z  - 2 + 3i} \right) = 0\);

Giải chi tiết:

\(\left( {iz - 1} \right)\left( {z + 3i} \right)\left( {\overline z  - 2 + 3i} \right) = 0 \Leftrightarrow \left[ \matrix{  iz - 1 = 0 \hfill \cr  z + 3i = 0 \hfill \cr  \overline z  - 2 + 3i = 0 \hfill \cr}  \right. \Leftrightarrow \left[ \matrix{  z = {1 \over i} =  - i \hfill \cr  z =  - 3i \hfill \cr  z = 2 + 3i \hfill \cr}  \right.\)

Vậy tập nghiệm phương trình là \(S = \left\{ { - i, - 3i,2 + 3i} \right\}\)


LG e

\({z^2} + 4 = 0\);

Giải chi tiết:

\({z^2} + 4 = 0 \Leftrightarrow {z^2} - 4{i^2}=0 \Leftrightarrow \left( {z - 2i} \right)\left( {z + 2i} \right) = 0 \Leftrightarrow z = 2i\text{ hoặc } z =  - 2i\).

Vậy \(S = \left\{ {2i, - 2i} \right\}\)