Bài 4 trang 18 SGK Hình học 12
Giải bài 4 trang 18 SGK Hình học 12. Cho hình bát diện đều ABCDEF:
Cho hình bát diện đều \(ABCDEF\)
Chứng minh rằng :
LG a
a) Các đoạn thẳng \(AF, BD\) và \(CE\) đôi một vuông góc với nhau và cắt nhau tại trung điểm mỗi đường.
Phương pháp giải:
+) Sử dụng tính chất của mặt phẳng trung trực.
+) Dấu hiệu nhân biết hình vuông: Hình thoi có hai đường chéo bằng nhau là hình vuông.
Lời giải chi tiết:
a) Do \(B, C, D, E\) cách đều \(A\) và \(F\) nên chúng đồng phẳng (cùng thuộc mặt phẳng trung trực của \(AF\)).
Tương tự, \(A, B, F, D\) đồng phẳng và \(A, C, F, E\) đồng phẳng.
Gọi \(I\) là giao của \((AF)\) với \((BCDE)\). Khi đó \(B, I, D\) là những điểm chung của hai mặt phẳng \((BCDE)\) và \((ABFD)\) nên chúng thẳng hàng. Tương tự, \(E, I , C\) thẳng hàng.
Vậy \(AF, BD, CE\) đồng quy tại \(I\).
Vì \(BCDE\) là hình thoi nên \(EC\) vuông góc với \(BC\) và cắt \(BC\) tại \(I\) là trung điểm của mỗi đường. \(I\) là trung điểm của \(AF\) và \(AF\) vuông góc với \(BD\) và \(EC\), do đó các đoạn thẳng \(AF, BD\), và \(CE\) đôi một vuông góc với nhau cắt nhau tại trung điểm của chúng.
LG b
b) \(ABFD, AEFC\) và \(BCDE\) là những hình vuông.
Phương pháp giải:
+) Sử dụng tính chất của mặt phẳng trung trực.
+) Dấu hiệu nhân biết hình vuông: Hình thoi có hai đường chéo bằng nhau là hình vuông.
Lời giải chi tiết:
b) Ta có tứ giác \(DCBE\) là hình thoi.
Do \(AI\) vuông góc \((BCDE)\) và \(AB = AC =AD = AE\) nên \(IB = IC= ID = IE\).
Từ đó suy ra hình thoi \(BCDE\) là hình vuông. Tương tự \(ABFD, AEFC\) là những hình vuông.
Search google: "từ khóa + timdapan.com" Ví dụ: "Bài 4 trang 18 SGK Hình học 12 timdapan.com"