Bài 16 trang 75 SGK Toán 8 tập 1
Giải bài 16 trang 75 SGK Toán 8 tập 1. Cho tam giác ABC cân tại A, các đường phân giác BD, CE (D ∈ AC, E ∈ AB). Chứng minh rằng BEDC là hình thang cân có đáy nhỏ bằng cạnh bên.
Đề bài
Cho tam giác \(ABC\) cân tại \(A\), các đường phân giác \(BD, CE\) (\(D ∈ AC, E ∈ AB\)). Chứng minh rằng \(BEDC\) là hình thang cân có đáy nhỏ bằng cạnh bên.
Phương pháp giải - Xem chi tiết
- Hai tam giác bằng nhau có các cạnh tương ứng bằng nhau.
- Tam giác cân có hai cạnh bên bằng nhau hai góc đáy bằng nhau.
- Hai đường thẳng song song khi có cặp góc đồng vị bằng nhau.
- Hình thang là tứ giác có hai cạnh đối song song.
- Hình thang cân là hình thang có hai góc kề với một đáy bằng nhau.
Lời giải chi tiết
\(\Delta ABC\) cân tại \(A\) (giả thiết)
\( \Rightarrow \left\{ \begin{array}{l}
AB = AC\\
\widehat {ABC} = \widehat {ACB}
\end{array} \right.\) (tính chất tam giác cân)
Vì \(BD, CE\) lần lượt là phân giác của \(\widehat {ABC}\) và \(\widehat {ACB}\) (giả thiết)
\( \Rightarrow \left\{ \begin{array}{l}
\widehat {{B_1}} = \widehat {{B_2}} = \dfrac{{\widehat {ABC}}}{2}\\
\widehat {{C_1}} = \widehat {{C_2}} = \dfrac{{\widehat {ACB}}}{2}
\end{array} \right.\) (tính chất tia phân giác)
Mà \(\widehat {ABC} = \widehat {ACB}\) (chứng minh trên)
\( \Rightarrow \widehat {{B_1}} = \widehat {{B_2}} = \widehat {{C_1}} = \widehat {{C_2}}\)
Xét \(∆ABD\) và \(∆ACE\) có:
+) \(AB = AC\) (chứng minh trên)
+) \(\widehat{A}\) chung
+) \(\widehat {{B_1}} = \widehat {{C_1}}\) (chứng minh trên)
\( \Rightarrow \Delta ABD = \Delta ACE{\rm{ }}\left( {g.c.g} \right) \)
\(\Rightarrow A{\rm{D}} = A{\rm{E}}\) (\(2\) cạnh tương ứng).
Ta có \(AD = AE\) (chứng minh trên) nên \(∆ADE\) cân tại \(A\) (dấu hiệu nhận biết tam giác cân)
\( \Rightarrow \widehat {A{\rm{ED}}} = \widehat {AD{\rm{E}}}\) (tính chất tam giác cân)
Xét \(∆ADE\) có: \(\widehat {A{\rm{ED}}} + \widehat {AD{\rm{E}}} + \widehat A = {180^0}\) (định lý tổng ba góc trong tam giác)
\(\begin{array}{l}
\Rightarrow 2\widehat {A{\rm{ED}}} + \widehat A = {180^0}\\
\Rightarrow \widehat {A{\rm{ED}}} = \dfrac{{{{180}^0} - \widehat A}}{2}\left( 1 \right)
\end{array}\)
Xét \(∆ABC\) có: \(\widehat A +\widehat {ABC} + \widehat {ACB} = {180^0}\) (định lý tổng ba góc trong tam giác)
Mà \(\widehat {ABC} = \widehat {ACB}\) (chứng minh trên)
\(\begin{array}{l}
\Rightarrow \widehat {2ABC} + \widehat A = {180^0}\\
\Rightarrow \widehat {ABC}= \dfrac{{{{180}^0} - \widehat A}}{2}\left( 2 \right)
\end{array}\)
Từ (1) và (2) \(\Rightarrow \widehat{A{\rm{ED}}}\) = \(\widehat{ABC}\), mà hai góc này là hai góc đồng vị nên suy ra \(DE // BC\) (dấu hiệu nhận biết hai đường thẳng song song)
Do đó \(BEDC\) là hình thang (dấu hiệu nhận biết hình thang).
Lại có \(\widehat{ABC}\) = \(\widehat{ACB}\) (chứng minh trên)
Nên \(BEDC\) là hình thang cân (dấu hiệu nhận biết hình thang cân)
Ta có:
\(DE//BC \Rightarrow \widehat {{D_1}} = \widehat {{B_2}}\) (so le trong)
Lại có \(\widehat{B_{2}}\) = \(\widehat{B_{1}}\) (chứng minh trên) nên \(\widehat{B_{1}}\) = \(\widehat{{D_{1}}}\)
\( \Rightarrow \Delta EB{\rm{D}}\) cân tại \(E\) (dấu hiệu nhận biết tam giác cân)
\( \Rightarrow EB = E{\rm{D}}\) (tính chất tam giác cân).
Vậy \(BEDC\) là hình thang cân có đáy nhỏ bằng cạnh bên.
Search google: "từ khóa + timdapan.com" Ví dụ: "Bài 16 trang 75 SGK Toán 8 tập 1 timdapan.com"