Bài 14 trang 85 SGK Hình học Nâng cao lớp 10

Tìm tọa độ ba đỉnh còn lại của hình bình hành đó


Đề bài

Cho hình bình hành có tọa độ một đỉnh là (4, -1). Biết phương trình các đường thẳng chứa hai cạnh là x - 3y = 0 và 2x + 5y +6 = 0. Tìm tọa độ ba đỉnh còn lại của hình bình hành đó.

Lời giải chi tiết

Giả sử hình bình hành ABCD có:

\(A\left( {4; - 1} \right)\) và \(BC:x - 3y = 0;\,\,CD:2x + 5y + 6 = 0\) (do A không nằm trên hai đường thẳng này).

Vì C là giao của BC và CD nên tọa độ đỉnh C là nghiệm của hệ sau:

\(\left\{ \matrix{
x - 3y = 0 \hfill \cr 
2x + 5y = - 6 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
x = - {{18} \over {11}} \hfill \cr 
y = - {6 \over {11}} \hfill \cr} \right.\) 

Vậy \(C\left( { - {{18} \over {11}}; - {6 \over {11}}} \right).\)

+) Đường thẳng AD qua A và song song với BC nên nhận \(\overrightarrow {{n_{BC}}}  = \left( {1; - 3} \right)\) làm VTPT.

AD có phương trình:

\(1.\left( {x - 4} \right) - 3.\left( {y + 1} \right) = 0\) \( \Leftrightarrow x - 3y - 7 = 0.\)

D là giao điểm của AD và CD  nên tọa độ của điểm D là nghiệm của hệ sau:

\(\left\{ \matrix{
x - 3y = 7 \hfill \cr 
2x + 5y = - 6 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
x = {{17} \over {11}} \hfill \cr 
y = - {{20} \over {11}} \hfill \cr} \right.\)

Vậy \(D\left( {{{17} \over {11}}; - {{20} \over {11}}} \right).\)

+) Đường thẳng AB qua A và song song với CD nên nhận \(\overrightarrow {{n_{CD}}}  = \left( {2;5} \right)\) làm VTPT.

AB có phương trình là:

\(2.\left( {x - 4} \right) + 5.\left( {y + 1} \right) = 0\) \( \Leftrightarrow 2x + 5y - 3 = 0.\)

B là giao điểm của BC và AB nên tọa độ của B là nghiệm của hệ sau:

\(\left\{ \matrix{
2x + 5y - 3 = 0 \hfill \cr 
x - 3y = 0 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
x = {9 \over {11}} \hfill \cr 
y = {3 \over {11}} \hfill \cr} \right.\)

Vậy \(B\left( {{9 \over {11}};{3 \over {11}}} \right).\)

Bài giải tiếp theo