Bài 12 trang 191 SGK Đại số và Giải tích 12 Nâng cao

Xác định tập hợp các điểm trong mặt phẳng phức biểu diễn các số phức z thỏa mãn từng điều kiện sau:


Xác định tập hợp các điểm trong mặt phẳng phức biểu diễn các số phức \(z\) thỏa mãn từng điều kiện sau:

LG a

\(z^2\) là số thực âm;

Phương pháp giải:

Giả sử \(z=x+yi\), thay vào điều kiện bài cho tìm mối liên hệ x,y.

Lời giải chi tiết:

Giả sử \(z=x+yi\)

\({z^2} = {\left( {x + yi} \right)^2} = {x^2} - {y^2} + 2xyi\)

\(z^2\) là số thực âm

\( \Leftrightarrow \left\{ \begin{array}{l}
xy = 0\\
{x^2} - {y^2} < 0
\end{array} \right. \) \(\Leftrightarrow \left\{ \begin{array}{l}
\left[ \begin{array}{l}
x = 0\\
y = 0
\end{array} \right.\\
{x^2} < {y^2}
\end{array} \right. \) \(\Leftrightarrow \left[ \begin{array}{l}
\left\{ \begin{array}{l}
x = 0\\
0 < {y^2}
\end{array} \right.\\
\left\{ \begin{array}{l}
y = 0\\
{x^2} < 0\left( {VN} \right)
\end{array} \right.
\end{array} \right. \) \( \Leftrightarrow \left\{ \begin{array}{l}
x = 0\\
y \ne 0
\end{array} \right.\)

Vậy tập hợp các điểm cần tìm là trục \(Oy\) trừ điểm \(O\).


LG b

\(z^2\) là là số ảo;

Lời giải chi tiết:

\({z^2} = {x^2} - {y^2} + 2xyi\)

\(z^2\) là số ảo \( \Leftrightarrow {x^2} - {y^2} = 0 \Leftrightarrow x = y\) hoặc \(y = -x\)

Vậy tập hợp các điểm cần tìm là hai đường phân giác của các gốc tọa độ.


LG c

\({z^2} = {\left( {\overline z } \right)^2}\);

Lời giải chi tiết:

\(z = x + yi \Rightarrow \overline z  = x - yi\)

Ta có \({z^2} = {\left( {\overline z } \right)^2} \) \(\Leftrightarrow {x^2} - {y^2} + 2xyi ={x^2} - {y^2} - 2xyi\) \(\Leftrightarrow xy = 0 \) \(\Leftrightarrow \left[ \matrix{  x = 0 \hfill \cr  y = 0 \hfill \cr}  \right.\)

Vậy tập hợp các điểm cần tìm là các trục tọa độ.


LG d

\({1 \over {z - i}}\) là số ảo.

Lời giải chi tiết:

Ta có:

\(\begin{array}{l}
\dfrac{1}{{z - i}} = \dfrac{1}{{x + yi - i}} = \dfrac{1}{{x + \left( {y - 1} \right)i}}\\
= \dfrac{{x - \left( {y - 1} \right)i}}{{\left[ {x + \left( {y - 1} \right)i} \right]\left[ {x - \left( {y - 1} \right)i} \right]}}\\
= \dfrac{{x - \left( {y - 1} \right)i}}{{{x^2} + {{\left( {y - 1} \right)}^2}}}\\
= \dfrac{x}{{{x^2} + {{\left( {y - 1} \right)}^2}}} - \dfrac{{y - 1}}{{{x^2} + {{\left( {y - 1} \right)}^2}}}i
\end{array}\)

\(\dfrac{1}{{z - i}}\) là số ảo nếu:

\(\begin{array}{l}
\dfrac{x}{{{x^2} + {{\left( {y - 1} \right)}^2}}} = 0\\
\Leftrightarrow \left\{ \begin{array}{l}
x = 0\\
{x^2} + {\left( {y - 1} \right)^2} \ne 0
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
x = 0\\
{\left( {y - 1} \right)^2} \ne 0
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
x = 0\\
y \ne 1
\end{array} \right.
\end{array}\)

Vậy tập hợp các điểm cầm tìm là trục ảo trừ điểm \(I(0; 1)\) biểu diễn số \(i\).

Cách khác:

\({1 \over {z - i}}\) là số ảo \( \Leftrightarrow z - i\) là số ảo và \(z \ne i \Leftrightarrow z\) là số ảo khác i.

Vậy tập hợp các điểm cầm tìm là trục ảo trừ điểm \(I(0; 1)\) biểu diễn số \(i\).

 



Bài học liên quan

Từ khóa phổ biến