Bài 1 trang 88 SGK Hình học 10

Giải bài 1 trang 88 SGK Hình học 10. Xác đinh độ dài các trục, tọa độ tiêu điểm , tọa độ các đỉnh và vẽ các elip có phương trình sau:


Xác định độ dài các trục, tọa độ tiêu điểm, tọa độ các đỉnh và vẽ các elip có phương trình sau:

LG a

\(\frac{x^{2}}{25} + \frac{y^{2}}{9}= 1.\)

Phương pháp giải:

Cho phương trình ellip: \(\left( E \right):\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{b^2} = 1.\)

Khi đó:

+) Độ dài trục lớn là: \(2a\) và độ dài trục nhỏ là \(2b.\)

+) Tọa độ các đỉnh là: \({A_1}\left( { - a;\;0} \right),\;{A_2}\left( {a;\;0} \right),\;{B_1}\left( { - b;\;0} \right),\)\(\;{B_2}\left( {b;\;0} \right).\)

+) Tọa độ tiêu điểm: \({F_1}\left( { - c;\;0} \right),\;{F_2}\left( {c;\;0} \right)\) với \(c^2=a^2-b^2.\)

Lời giải chi tiết:

Ta có: \(a^2= 25 \Rightarrow a = 5\) độ dài trục lớn \(2a = 10\) 

\( b^2= 9 \Rightarrow  b = 3\) độ dài trục nhỏ \(2a = 6\) 

\(c^2= a^2– b^2= 25 - 9 = 16  \Rightarrow c = 4\)

Vậy hai tiêu điểm là : \(F_1(-4 ; 0)\) và \(F_2(4 ; 0)\)

Tọa độ các đỉnh \(A_1(-5; 0), A_2(5; 0),  B_1(0; -3),  B_2(0; 3)\).


LG b

\(4x^2+ 9y^2= 1.\)

Lời giải chi tiết:

\(4x^2+ 9y^2= 1\Leftrightarrow \dfrac{x^{2}}{\dfrac{1}{4}} + \dfrac{y^{2}}{\dfrac{1}{9}} = 1\)

\(a^2  =\dfrac{1}{4}\Rightarrow a = \dfrac{1}{2}\)  \(\Rightarrow\) độ dài trục lớn \(2a = 1\)

\(b^2= \dfrac{1}{9}\Rightarrow b = \dfrac{1}{3}\) \(\Rightarrow\)  độ dài trục nhỏ \(2b = \dfrac{2}{3}\)

\(c^2= a^2– b^2= \dfrac{1}{4}- \dfrac{1}{9} =  \dfrac{5}{36}\) \(\Rightarrow c = \dfrac{\sqrt{5}}{6}\)

\(F_1(-\dfrac{\sqrt{5}}{6} ; 0)\) và \(F_2(\dfrac{\sqrt{5}}{6} ; 0)\)

\(A_1(-\dfrac{1}{2}; 0), A_2(\dfrac{1}{2}; 0)\), \(B_1(0; -\dfrac{1}{3} ), B_2(0; \dfrac{1}{3} )\).


LG c

\(4x^2+ 9y^2= 36.\)

Lời giải chi tiết:

Chia \(2\) vế của phương trình cho \(36\) ta được :

\(\dfrac{x^{2}}{9}+ \dfrac{y^{2}}{4}= 1\)

Ta có:

\(\begin{array}{l}
{a^2} = 9 \Rightarrow a = 3\\
{b^2} = 4 \Rightarrow b = 2\\
{c^2} = {a^2} - {b^2} = 5 \Rightarrow c = \sqrt 5
\end{array}\)

+) Độ dài trục lớn \(2a = 6\)

+) Độ dài trục nhỏ \(     2b = 4\).

+) Tiêu điểm \(F_1(-\sqrt5 ; 0)\) và \(F_2(\sqrt5 ; 0)\)

 +) Cách đỉnh \(A_1(-3; 0), A_2(3; 0),  B_1(0; -2),  B_2(0; 2)\).