Bài 1: Định nghĩa và ý nghĩa của đạo hàm
1. Định nghĩa đạo hàm tại một điểm
a) Định nghĩa
Cho hàm số \(y=f(x)\) xác định trên khoảng \((a;b)\) và \(x_0 \in (a;b)\), đạo hàm của hàm số tại điểm \(x_0\) là:
\(f'({x_0}) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{f(x) - f({x_0})}}{{x - {x_0}}}.\)
b) Chú ý
Nếu kí hiệu \(\Delta x = x - {x_0};\)
\(\Delta y = f({x_0} + \Delta x) - f({x_0})\) thì:
\(f'({x_0}) = \mathop {\lim }\limits_{ x \to x_0} \frac{{f(x) - f({x_0})}}{{x - {x_0}}}\)
\(= \mathop {\lim }\limits_{\Delta x \to 0} \frac{{f({x_0} + \Delta x) - f({x_0})}}{{x - {x_0}}} = \mathop {\lim }\limits_{\Delta x \to 0} \frac{{\Delta y}}{{\Delta x}}.\)
Nếu hàm số \(y=f(x)\) có đạo hàm tại \(x_0\) thì liên tục tại điểm đó.
Để chứng minh hàm số không có đạo hàm tại điểm \(x_0\) ta thực hiện như sau:
- Chứng minh \(\mathop {\lim }\limits_{\Delta x \to 0} \frac{{f({x_0} + \Delta x) - f({x_0})}}{{x - {x_0}}}\) không tồn tại.
- Hoặc chứng minh hàm số không liên tục tại \(x_0.\)
c) Các bước tính đạo hàm bằng định nghĩa
- Tính \(\Delta y = f({x_0} + \Delta x) - f({x_0}) = f(x) - f({x_0})\)
- Lập tỷ số: \(\frac{{\Delta y}}{{\Delta x}}.\)
- Tính \(\mathop {\lim }\limits_{\Delta x \to 0} \frac{{\Delta y}}{{\Delta x}}.\)
2. Ý nghĩa hình học của đạo hàm
a) Ý nghĩa hình học
Cho hàm số \(y=f(x)\) có đồ thị (C):
- \(f'(x_0)\) là hệ số góc của tiếp tuyến đồ thị (C) của hàm số \(y=f(x)\) tại \(M_0(x_0;y_0) \in (C).\)
- Phương trình tiếp tuyến của đồ thị hàm số \(y=f(x)\) tại \(M_0(x_0;y_0) \in (C)\) là:
\(y = f'({x_0}).(x - {x_0}) + {y_0}\)
Các bước viết phương trình tiếp tuyến của đồ thị (C) tại điểm \(M_0(x_0;y_0) \in (C):\)
Bước 1: Tính \(f'({x_0}) = \mathop {\lim }\limits_{ x \to x_0} \frac{{f(x) - f({x_0})}}{{x - {x_0}}}\)
\(= \mathop {\lim }\limits_{\Delta x \to 0} \frac{{f({x_0} + \Delta x) - f({x_0})}}{{x - {x_0}}} = \mathop {\lim }\limits_{\Delta x \to 0} \frac{{\Delta y}}{{\Delta x}}.\)
Bước 2: Hệ số góc của tiếp tuyến với đồ thị (C) tại \(M_0\) là \(k=f'(x_0)\)
Bước 3: Phương trình tiếp tuyến với đồ thị (C) tại điểm \(M_0(x_0;y_0) \in (C)\) là:
\(y = f'({x_0}).(x - {x_0}) + {y_0}\)
Viết phương trình tiếp tuyến của đồ thị (C) hàm số y = f(x) khi biết hệ số k, ta thực hiện các bước sau:
Bước 1: Gọi \(M_0(x_0;y_0) \in (C)\) là tiếp điểm của tiếp tuyến với đồ thị (C).
Bước 2: Tính \(f'({x_0}) = \mathop {\lim }\limits_{ x \to x_0} \frac{{f(x) - f({x_0})}}{{x - {x_0}}}\)
\(= \mathop {\lim }\limits_{\Delta x \to 0} \frac{{f({x_0} + \Delta x) - f({x_0})}}{{x - {x_0}}} = \mathop {\lim }\limits_{\Delta x \to 0} \frac{{\Delta y}}{{\Delta x}}.\)
Bước 3: Giải phương trình \(k=f'(x_0)\)
tìm \(x_0\), rồi tìm \(y_0=f(x_0).\)
Bước 4: Phương trình tiếp tuyến của đồ thị (C) với hệ số góc k là: \(y = k(x - {x_0}) + {y_0}.\)
b) Ý nghĩa vật lý
- Vận tốc tức thời của chuyển động thẳng xác định bởi phương trình: \(s=s(t)\) tại thời điểm \(t_0\) là \(v(t_0)=s'(t_0).\)
- Cướng độ tức thời của điện lượng \(Q=Q(t)\)
tại thời điểm \(t_0\) là: \(I(t_0)=Q'(t_0).\)
3. Bài tập minh họa
Ví dụ 1:
Dùng định nghĩa, tính đạo hàm các hàm số sau:
a) \(f(x)=2x^2+3x+1\) tại \(x_0=-1.\)
b) \(f(x)=\sin x\) tại \(x_0=\frac{\pi}{6}.\)
c) \(f(x) = \sqrt {2x - 1}\) với \(x>\frac{1}{2}.\)
Hướng dẫn giải:
a) \(f(x)=2x^2+3x+1\)
\(\Delta x = x + 1 \Rightarrow x = - 1 + \Delta x\)
và \(\Delta y = f( - 1 + \Delta x) - f( - 1) = 2{\left( {\Delta x} \right)^2} - \Delta x\)
Vậy \(f'( - 1) = \mathop {\lim }\limits_{\Delta x \to 0} \frac{{\Delta y}}{{\Delta x}} \)
\(= \mathop {\lim }\limits_{\Delta x \to 0} \frac{{2{{\left( {\Delta x} \right)}^2} - \Delta x}}{{\Delta x}} = \mathop {\lim }\limits_{\Delta x \to 0} \left( {2\Delta x - 1} \right) = - 1.\)
b) \(f(x)=\sin x\)
\(\Delta x = x - \frac{\pi }{6} \Rightarrow x = \frac{\pi }{6} + \Delta x\)
\(\Delta y = f\left( {\frac{\pi }{6} + \Delta x} \right) - f\left( {\frac{\pi }{6}} \right) \)
\(= \sin \left( {\frac{\pi }{6} + \Delta x} \right) - \sin \left( {\frac{\pi }{6}} \right) \)
\(= 2\cos \left( {\frac{\pi }{6} + \frac{{\Delta x}}{2}} \right).\sin \left( {\frac{{\Delta x}}{2}} \right)\)
\(f'\left( {\frac{\pi }{6}} \right) = \mathop {\lim }\limits_{\Delta x \to 0} \frac{{\Delta y}}{{\Delta x}} \)
\(= \mathop {\lim }\limits_{\Delta x \to 0} \frac{{2\cos \left( {\frac{\pi }{6} + \frac{{\Delta x}}{2}} \right).\sin \left( {\frac{{\Delta x}}{2}} \right)}}{{\Delta x}}\)
\(\begin{array}{*{20}{l}}
\begin{array}{l}
= \mathop {\lim }\limits_{\Delta x \to 0} \frac{{\cos \left( {\frac{\pi }{6} + \frac{{\Delta x}}{2}} \right).\sin \left( {\frac{{\Delta x}}{2}} \right)}}{{\frac{{\Delta x}}{2}}}\\
= \mathop {\lim }\limits_{\Delta x \to 0} \cos \left( {\frac{\pi }{6} + \frac{{\Delta x}}{2}} \right).\mathop {\lim }\limits_{\Delta x \to 0} \frac{{\sin \left( {\frac{{\Delta x}}{2}} \right)}}{{\frac{{\Delta x}}{2}}}
\end{array}\\
{ = \cos \left( {\frac{\pi }{6}} \right).1 = \cos \left( {\frac{\pi }{6}} \right) = \frac{{\sqrt 3 }}{2}.}
\end{array}\)
c) \(f(x) = \sqrt {2x - 1}\) với \(x>\frac{1}{2}\)
\(\begin{array}{*{20}{l}}
\begin{array}{l}
f'(x) = \mathop {\lim }\limits_{\Delta x \to 0} \frac{{f(x + \Delta x) - f(x)}}{{\Delta x}}\\
= \mathop {\lim }\limits_{\Delta x \to 0} \frac{{\sqrt {2(x + \Delta x) - 1} - \sqrt {2x - 1} }}{{\Delta x}}
\end{array}\\
{ = \mathop {\lim }\limits_{\Delta x \to 0} \frac{{2\Delta x}}{{\left( {\sqrt {2(x + \Delta x) - 1} - \sqrt {2x - 1} } \right).\Delta x}}}\\
{ = \mathop {\lim }\limits_{\Delta x \to 0} \frac{2}{{\sqrt {2(x + \Delta x) - 1} - \sqrt {2x - 1} }} = \frac{2}{{\sqrt {2x - 1} }}.}
\end{array}\)
Ví dụ 2:
Cho hàm số \(f(x) = \left\{ \begin{array}{l} {(x - 1)^2}\,khi\,\,x \ge 0\\ {(x + 1)^2}\,khi\,\,x < 0 \end{array} \right..\) Chứng minh rằng hàm số liên tục tại x = 0 nhưng không có đạo hàm tại x = 0.
Hướng dẫn giải:
Chứng minh hàm số liên tục tại x = 0:
\(\begin{array}{l} \mathop {\lim }\limits_{x \to {0^ + }} f(x) = \mathop {\lim }\limits_{x \to {0^ + }} {(x - 1)^2} = 1 = f(0)\\ \mathop {\lim }\limits_{x \to {0^ - }} f(x) = \mathop {\lim }\limits_{x \to {0^ - }} {(x + 1)^2} = 1 = f(0) \end{array}\)
Suy ra: \(\mathop {\lim }\limits_{x \to {0^ + }} f(x) = \mathop {\lim }\limits_{x \to {0^ - }} f(x) = f(0)\) nên hàm số liên tục tại x=0.
Chứng minh hàm số không có đạo hàm tại x = 0:
\(\mathop {\lim }\limits_{\Delta x \to {0^ + }} \frac{{f\left( {\Delta x} \right) - f(0)}}{{\Delta x}} = \mathop {\lim }\limits_{\Delta x \to {0^ + }} \frac{{{{\left( {\Delta x - 1} \right)}^2} - 1}}{{\Delta x}} \)
\(= \mathop {\lim }\limits_{\Delta x \to {0^ + }} \left( {\Delta x - 2} \right) = - 2\)
\(\mathop {\lim }\limits_{\Delta x \to {0^ - }} \frac{{f\left( {\Delta x} \right) - f(0)}}{{\Delta x}} = \mathop {\lim }\limits_{\Delta x \to {0^ - }} \frac{{{{\left( {\Delta x + 1} \right)}^2} - 1}}{{\Delta x}} \)
\(= \mathop {\lim }\limits_{\Delta x \to {0^ - }} \left( {\Delta x + 2} \right) = 2\)
Suy ra:
\(\mathop {\lim }\limits_{\Delta x \to {0^ + }} \frac{{f\left( {\Delta x} \right) - f(0)}}{{\Delta x}} \ne \mathop {\lim }\limits_{\Delta x \to {0^ - }} \frac{{f\left( {\Delta x} \right) - f(0)}}{{\Delta x}}\)
Nên không tồn tại \(\mathop {\lim }\limits_{\Delta x \to 0} \frac{{f\left( {\Delta x} \right) - f(0)}}{{\Delta x}}\).
Vậy hàm số không có đạo hàm tại x = 0.
Ví dụ 3:
a) Viết phương trình tiếp tuyến của đồ thị hàm số \(y = {x^3} - 3{x^2} + 2\) tại điểm (-1;2).
b) Viết phương trình tiếp tuyến của hàm số \(y=x^2-2x+3\) biết:
i) Tiếp tuyến song song với đường thẳng \(4x-2y+5=0.\)
ii) Tiếp tuyến vuông góc với đường thẳng \(x+4y=0.\)
Hướng dẫn giải:
a) Ta có:
\(\begin{array}{l}
f'({x_0}) = f'( - 1) = \mathop {\lim }\limits_{x \to - 1} \frac{{f(x) - f( - 1)}}{{x + 1}}\\
= \mathop {\lim }\limits_{x \to - 1} \frac{{{x^3} - 3{x^2} + 4}}{{x + 1}} = \mathop {\lim }\limits_{x \to - 1} ({x^2} - 4x + 4) = 9.
\end{array}\)
Vậy hệ số góc của tiếp tuyến với đồ thị (C) tại điểm (-1;-2) là \(k=f'(-1)=9\).
Phương trình tiếp tuyến với đồ thị (C) tại điểm (-1;2) là: \(y = 9(x + 1) - 2 = 9x + 7.\)
b) Gọi \(M_0(x_0;y_0) \in (C)\) là tiếp điểm của tiếp tuyến với đồ thị (C) của hàm số \(y=x^2-2x+3\):
\(f'(x) = \mathop {\lim }\limits_{\Delta x \to 0} \frac{{f(x + \Delta x) - f(x)}}{{\Delta x}} \)
\(= \mathop {\lim }\limits_{\Delta x \to 0} \frac{{\left[ {{{\left( {x + \Delta x} \right)}^2} - 2(x + \Delta x) + 3} \right] - \left[ {{x^2} - 2x + 3} \right]}}{{\Delta x}}\)
\(\begin{array}{l}
= \mathop {\lim }\limits_{\Delta x \to 0} \frac{{\left( {2x + \Delta x} \right).\Delta x - 2.\Delta x}}{{\Delta x}}\\
= \mathop {\lim }\limits_{\Delta x \to 0} \left( {2x + \Delta x - 2} \right) = 2x - 2.
\end{array}\)
i) \(4x - 2y + 5 = 0 \Leftrightarrow y = 2x + \frac{5}{2}\) có hệ số góc k' = 2.
Do tiếp tuyến song song với đường thẳng \(4x-2y+5=0\) nên có hệ số góc k = 2.
Ta có:
\(f'({x_0}) = 2 \Leftrightarrow 2{x_0} - 2 = 2 \Leftrightarrow {x_0} = 2 \)
\(\Rightarrow {y_0} = f(2) = 3.\)
Vậy phương trình tiếp tuyến là:
\(y = 2(x - 2) + 3 \Rightarrow y = 2x - 1.\)
ii) Đường thẳng \(x + 4y = 0 \Leftrightarrow y = - \frac{1}{4}x\)
có hệ số góc \(k'=-\frac{1}{4}.\)
Gọi k là hệ số góc của tiếp tuyến.
Do tiếp tuyến vuông góc với đường thẳng \(x+4y=0\) nên: \(k.k' = - 1 \Rightarrow k = 4.\)
Ta có:
\(f'({x_0}) = 4 \Leftrightarrow 2{x_0} - 2 = 4 \Leftrightarrow {x_0} = 3\)
\(\Rightarrow {y_0} = f(3) = 6.\)
Vậy phương trình tiếp tuyến là:
\(y = 4(x - 3) + 6 \Rightarrow y = 4x - 6.\)
1. Định nghĩa đạo hàm tại một điểm
a) Định nghĩa
Cho hàm số \(y=f(x)\) xác định trên khoảng \((a;b)\) và \(x_0 \in (a;b)\), đạo hàm của hàm số tại điểm \(x_0\) là:
\(f'({x_0}) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{f(x) - f({x_0})}}{{x - {x_0}}}.\)
b) Chú ý
Nếu kí hiệu \(\Delta x = x - {x_0};\)
\(\Delta y = f({x_0} + \Delta x) - f({x_0})\) thì:
\(f'({x_0}) = \mathop {\lim }\limits_{ x \to x_0} \frac{{f(x) - f({x_0})}}{{x - {x_0}}}\)
\(= \mathop {\lim }\limits_{\Delta x \to 0} \frac{{f({x_0} + \Delta x) - f({x_0})}}{{x - {x_0}}} = \mathop {\lim }\limits_{\Delta x \to 0} \frac{{\Delta y}}{{\Delta x}}.\)
Nếu hàm số \(y=f(x)\) có đạo hàm tại \(x_0\) thì liên tục tại điểm đó.
Để chứng minh hàm số không có đạo hàm tại điểm \(x_0\) ta thực hiện như sau:
- Chứng minh \(\mathop {\lim }\limits_{\Delta x \to 0} \frac{{f({x_0} + \Delta x) - f({x_0})}}{{x - {x_0}}}\) không tồn tại.
- Hoặc chứng minh hàm số không liên tục tại \(x_0.\)
c) Các bước tính đạo hàm bằng định nghĩa
- Tính \(\Delta y = f({x_0} + \Delta x) - f({x_0}) = f(x) - f({x_0})\)
- Lập tỷ số: \(\frac{{\Delta y}}{{\Delta x}}.\)
- Tính \(\mathop {\lim }\limits_{\Delta x \to 0} \frac{{\Delta y}}{{\Delta x}}.\)
2. Ý nghĩa hình học của đạo hàm
a) Ý nghĩa hình học
Cho hàm số \(y=f(x)\) có đồ thị (C):
- \(f'(x_0)\) là hệ số góc của tiếp tuyến đồ thị (C) của hàm số \(y=f(x)\) tại \(M_0(x_0;y_0) \in (C).\)
- Phương trình tiếp tuyến của đồ thị hàm số \(y=f(x)\) tại \(M_0(x_0;y_0) \in (C)\) là:
\(y = f'({x_0}).(x - {x_0}) + {y_0}\)
Các bước viết phương trình tiếp tuyến của đồ thị (C) tại điểm \(M_0(x_0;y_0) \in (C):\)
Bước 1: Tính \(f'({x_0}) = \mathop {\lim }\limits_{ x \to x_0} \frac{{f(x) - f({x_0})}}{{x - {x_0}}}\)
\(= \mathop {\lim }\limits_{\Delta x \to 0} \frac{{f({x_0} + \Delta x) - f({x_0})}}{{x - {x_0}}} = \mathop {\lim }\limits_{\Delta x \to 0} \frac{{\Delta y}}{{\Delta x}}.\)
Bước 2: Hệ số góc của tiếp tuyến với đồ thị (C) tại \(M_0\) là \(k=f'(x_0)\)
Bước 3: Phương trình tiếp tuyến với đồ thị (C) tại điểm \(M_0(x_0;y_0) \in (C)\) là:
\(y = f'({x_0}).(x - {x_0}) + {y_0}\)
Viết phương trình tiếp tuyến của đồ thị (C) hàm số y = f(x) khi biết hệ số k, ta thực hiện các bước sau:
Bước 1: Gọi \(M_0(x_0;y_0) \in (C)\) là tiếp điểm của tiếp tuyến với đồ thị (C).
Bước 2: Tính \(f'({x_0}) = \mathop {\lim }\limits_{ x \to x_0} \frac{{f(x) - f({x_0})}}{{x - {x_0}}}\)
\(= \mathop {\lim }\limits_{\Delta x \to 0} \frac{{f({x_0} + \Delta x) - f({x_0})}}{{x - {x_0}}} = \mathop {\lim }\limits_{\Delta x \to 0} \frac{{\Delta y}}{{\Delta x}}.\)
Bước 3: Giải phương trình \(k=f'(x_0)\)
tìm \(x_0\), rồi tìm \(y_0=f(x_0).\)
Bước 4: Phương trình tiếp tuyến của đồ thị (C) với hệ số góc k là: \(y = k(x - {x_0}) + {y_0}.\)
b) Ý nghĩa vật lý
- Vận tốc tức thời của chuyển động thẳng xác định bởi phương trình: \(s=s(t)\) tại thời điểm \(t_0\) là \(v(t_0)=s'(t_0).\)
- Cướng độ tức thời của điện lượng \(Q=Q(t)\)
tại thời điểm \(t_0\) là: \(I(t_0)=Q'(t_0).\)
3. Bài tập minh họa
Ví dụ 1:
Dùng định nghĩa, tính đạo hàm các hàm số sau:
a) \(f(x)=2x^2+3x+1\) tại \(x_0=-1.\)
b) \(f(x)=\sin x\) tại \(x_0=\frac{\pi}{6}.\)
c) \(f(x) = \sqrt {2x - 1}\) với \(x>\frac{1}{2}.\)
Hướng dẫn giải:
a) \(f(x)=2x^2+3x+1\)
\(\Delta x = x + 1 \Rightarrow x = - 1 + \Delta x\)
và \(\Delta y = f( - 1 + \Delta x) - f( - 1) = 2{\left( {\Delta x} \right)^2} - \Delta x\)
Vậy \(f'( - 1) = \mathop {\lim }\limits_{\Delta x \to 0} \frac{{\Delta y}}{{\Delta x}} \)
\(= \mathop {\lim }\limits_{\Delta x \to 0} \frac{{2{{\left( {\Delta x} \right)}^2} - \Delta x}}{{\Delta x}} = \mathop {\lim }\limits_{\Delta x \to 0} \left( {2\Delta x - 1} \right) = - 1.\)
b) \(f(x)=\sin x\)
\(\Delta x = x - \frac{\pi }{6} \Rightarrow x = \frac{\pi }{6} + \Delta x\)
\(\Delta y = f\left( {\frac{\pi }{6} + \Delta x} \right) - f\left( {\frac{\pi }{6}} \right) \)
\(= \sin \left( {\frac{\pi }{6} + \Delta x} \right) - \sin \left( {\frac{\pi }{6}} \right) \)
\(= 2\cos \left( {\frac{\pi }{6} + \frac{{\Delta x}}{2}} \right).\sin \left( {\frac{{\Delta x}}{2}} \right)\)
\(f'\left( {\frac{\pi }{6}} \right) = \mathop {\lim }\limits_{\Delta x \to 0} \frac{{\Delta y}}{{\Delta x}} \)
\(= \mathop {\lim }\limits_{\Delta x \to 0} \frac{{2\cos \left( {\frac{\pi }{6} + \frac{{\Delta x}}{2}} \right).\sin \left( {\frac{{\Delta x}}{2}} \right)}}{{\Delta x}}\)
\(\begin{array}{*{20}{l}}
\begin{array}{l}
= \mathop {\lim }\limits_{\Delta x \to 0} \frac{{\cos \left( {\frac{\pi }{6} + \frac{{\Delta x}}{2}} \right).\sin \left( {\frac{{\Delta x}}{2}} \right)}}{{\frac{{\Delta x}}{2}}}\\
= \mathop {\lim }\limits_{\Delta x \to 0} \cos \left( {\frac{\pi }{6} + \frac{{\Delta x}}{2}} \right).\mathop {\lim }\limits_{\Delta x \to 0} \frac{{\sin \left( {\frac{{\Delta x}}{2}} \right)}}{{\frac{{\Delta x}}{2}}}
\end{array}\\
{ = \cos \left( {\frac{\pi }{6}} \right).1 = \cos \left( {\frac{\pi }{6}} \right) = \frac{{\sqrt 3 }}{2}.}
\end{array}\)
c) \(f(x) = \sqrt {2x - 1}\) với \(x>\frac{1}{2}\)
\(\begin{array}{*{20}{l}}
\begin{array}{l}
f'(x) = \mathop {\lim }\limits_{\Delta x \to 0} \frac{{f(x + \Delta x) - f(x)}}{{\Delta x}}\\
= \mathop {\lim }\limits_{\Delta x \to 0} \frac{{\sqrt {2(x + \Delta x) - 1} - \sqrt {2x - 1} }}{{\Delta x}}
\end{array}\\
{ = \mathop {\lim }\limits_{\Delta x \to 0} \frac{{2\Delta x}}{{\left( {\sqrt {2(x + \Delta x) - 1} - \sqrt {2x - 1} } \right).\Delta x}}}\\
{ = \mathop {\lim }\limits_{\Delta x \to 0} \frac{2}{{\sqrt {2(x + \Delta x) - 1} - \sqrt {2x - 1} }} = \frac{2}{{\sqrt {2x - 1} }}.}
\end{array}\)
Ví dụ 2:
Cho hàm số \(f(x) = \left\{ \begin{array}{l} {(x - 1)^2}\,khi\,\,x \ge 0\\ {(x + 1)^2}\,khi\,\,x < 0 \end{array} \right..\) Chứng minh rằng hàm số liên tục tại x = 0 nhưng không có đạo hàm tại x = 0.
Hướng dẫn giải:
Chứng minh hàm số liên tục tại x = 0:
\(\begin{array}{l} \mathop {\lim }\limits_{x \to {0^ + }} f(x) = \mathop {\lim }\limits_{x \to {0^ + }} {(x - 1)^2} = 1 = f(0)\\ \mathop {\lim }\limits_{x \to {0^ - }} f(x) = \mathop {\lim }\limits_{x \to {0^ - }} {(x + 1)^2} = 1 = f(0) \end{array}\)
Suy ra: \(\mathop {\lim }\limits_{x \to {0^ + }} f(x) = \mathop {\lim }\limits_{x \to {0^ - }} f(x) = f(0)\) nên hàm số liên tục tại x=0.
Chứng minh hàm số không có đạo hàm tại x = 0:
\(\mathop {\lim }\limits_{\Delta x \to {0^ + }} \frac{{f\left( {\Delta x} \right) - f(0)}}{{\Delta x}} = \mathop {\lim }\limits_{\Delta x \to {0^ + }} \frac{{{{\left( {\Delta x - 1} \right)}^2} - 1}}{{\Delta x}} \)
\(= \mathop {\lim }\limits_{\Delta x \to {0^ + }} \left( {\Delta x - 2} \right) = - 2\)
\(\mathop {\lim }\limits_{\Delta x \to {0^ - }} \frac{{f\left( {\Delta x} \right) - f(0)}}{{\Delta x}} = \mathop {\lim }\limits_{\Delta x \to {0^ - }} \frac{{{{\left( {\Delta x + 1} \right)}^2} - 1}}{{\Delta x}} \)
\(= \mathop {\lim }\limits_{\Delta x \to {0^ - }} \left( {\Delta x + 2} \right) = 2\)
Suy ra:
\(\mathop {\lim }\limits_{\Delta x \to {0^ + }} \frac{{f\left( {\Delta x} \right) - f(0)}}{{\Delta x}} \ne \mathop {\lim }\limits_{\Delta x \to {0^ - }} \frac{{f\left( {\Delta x} \right) - f(0)}}{{\Delta x}}\)
Nên không tồn tại \(\mathop {\lim }\limits_{\Delta x \to 0} \frac{{f\left( {\Delta x} \right) - f(0)}}{{\Delta x}}\).
Vậy hàm số không có đạo hàm tại x = 0.
Ví dụ 3:
a) Viết phương trình tiếp tuyến của đồ thị hàm số \(y = {x^3} - 3{x^2} + 2\) tại điểm (-1;2).
b) Viết phương trình tiếp tuyến của hàm số \(y=x^2-2x+3\) biết:
i) Tiếp tuyến song song với đường thẳng \(4x-2y+5=0.\)
ii) Tiếp tuyến vuông góc với đường thẳng \(x+4y=0.\)
Hướng dẫn giải:
a) Ta có:
\(\begin{array}{l}
f'({x_0}) = f'( - 1) = \mathop {\lim }\limits_{x \to - 1} \frac{{f(x) - f( - 1)}}{{x + 1}}\\
= \mathop {\lim }\limits_{x \to - 1} \frac{{{x^3} - 3{x^2} + 4}}{{x + 1}} = \mathop {\lim }\limits_{x \to - 1} ({x^2} - 4x + 4) = 9.
\end{array}\)
Vậy hệ số góc của tiếp tuyến với đồ thị (C) tại điểm (-1;-2) là \(k=f'(-1)=9\).
Phương trình tiếp tuyến với đồ thị (C) tại điểm (-1;2) là: \(y = 9(x + 1) - 2 = 9x + 7.\)
b) Gọi \(M_0(x_0;y_0) \in (C)\) là tiếp điểm của tiếp tuyến với đồ thị (C) của hàm số \(y=x^2-2x+3\):
\(f'(x) = \mathop {\lim }\limits_{\Delta x \to 0} \frac{{f(x + \Delta x) - f(x)}}{{\Delta x}} \)
\(= \mathop {\lim }\limits_{\Delta x \to 0} \frac{{\left[ {{{\left( {x + \Delta x} \right)}^2} - 2(x + \Delta x) + 3} \right] - \left[ {{x^2} - 2x + 3} \right]}}{{\Delta x}}\)
\(\begin{array}{l}
= \mathop {\lim }\limits_{\Delta x \to 0} \frac{{\left( {2x + \Delta x} \right).\Delta x - 2.\Delta x}}{{\Delta x}}\\
= \mathop {\lim }\limits_{\Delta x \to 0} \left( {2x + \Delta x - 2} \right) = 2x - 2.
\end{array}\)
i) \(4x - 2y + 5 = 0 \Leftrightarrow y = 2x + \frac{5}{2}\) có hệ số góc k' = 2.
Do tiếp tuyến song song với đường thẳng \(4x-2y+5=0\) nên có hệ số góc k = 2.
Ta có:
\(f'({x_0}) = 2 \Leftrightarrow 2{x_0} - 2 = 2 \Leftrightarrow {x_0} = 2 \)
\(\Rightarrow {y_0} = f(2) = 3.\)
Vậy phương trình tiếp tuyến là:
\(y = 2(x - 2) + 3 \Rightarrow y = 2x - 1.\)
ii) Đường thẳng \(x + 4y = 0 \Leftrightarrow y = - \frac{1}{4}x\)
có hệ số góc \(k'=-\frac{1}{4}.\)
Gọi k là hệ số góc của tiếp tuyến.
Do tiếp tuyến vuông góc với đường thẳng \(x+4y=0\) nên: \(k.k' = - 1 \Rightarrow k = 4.\)
Ta có:
\(f'({x_0}) = 4 \Leftrightarrow 2{x_0} - 2 = 4 \Leftrightarrow {x_0} = 3\)
\(\Rightarrow {y_0} = f(3) = 6.\)
Vậy phương trình tiếp tuyến là:
\(y = 4(x - 3) + 6 \Rightarrow y = 4x - 6.\)