Bài 4: Đường tiệm cận
Video bài giảng
1. Đường tiệm cận ngang
a) Định nghĩa
Đường thẳng \(y=b\) được gọi là tiệm cận ngang của đồ thị hàm số \(y = f(x)\) nếu thỏa mãn một trong các điều kiện sau:
- \(\lim_{x\rightarrow -\infty } f(x) = b\)
- \(\lim_{x\rightarrow +\infty } f(x) = b\)
b) Chú ý
+ Điều kiện để đồ thị hàm số \(y = \frac{P(x)}{Q(x)}\) có tiệm cận ngang là bậc của đa thức P(x) bé hơn hoặc bằng bậc của đa thức Q(x).
+ Tổng quát: Xét hàm số \(y = \frac{a_nx^n + ... + a_0}{b_mx^m + ... + b_0} \)
\(m, n \in N; a_n\neq 0; b_m\neq 0\).
- Điều kiện để hàm số có tiệm cận ngang là \(n\leq m.\)
- Nếu \(n=m\): tiệm cận ngang là đường thẳng \(y = \frac{a_n}{b_m}\)
- Nếu \(n < m\): tiệm cận ngang là đường thẳng y = 0.
2. Đường tiệm cận đứng
a) Định nghĩa
Đường thẳng \(x=a\) được gọi là đường tiệm cận đứng của đồ thị hàm số \(y = f(x)\) nếu thỏa mãn một trong các điều kiện sau:
- \(\lim_{x\rightarrow a^+} f(x) = \pm \infty\)
- \(\lim_{x\rightarrow a^-} f(x) = \pm \infty\)
b) Chú ý
- Đường thẳng \(x=a\) là đường tiệm cận đứng của đồ thị \(y = f(x)\) thì a không thuộc tập xác định của \(f(x)\).
- Đối với hàm phân thức \(y = \frac{P(x)}{Q(x)}\) thì a là nghiệm Q(x)=0.
4. Bài toán Tìm các đường tiệm cận của đồ thị hàm số
Ví dụ 1:
Tìm tiệm cận đứng và tiệm cận ngang của đồ thị hàm số \(y=\frac{2x-1}{x+2}\).
Lời giải:
TXĐ: \(D = \mathbb{R}\backslash \left\{ -2 \right\}\)
Ta có:
\(\begin{array}{l} \mathop {\lim }\limits_{x \to - \infty } y = \mathop {\lim }\limits_{x \to - \infty } \frac{{2x - 1}}{{x + 2}} = 2\\ \mathop {\lim }\limits_{x \to + \infty } y = \mathop {\lim }\limits_{x \to + \infty } \frac{{2x - 1}}{{x + 2}} = 2 \end{array}\)
Vậy đường thẳng y = 2 là tiệm cận ngang của đồ thị hàm số \(y=\frac{2x-1}{x+2}\).
Ta có:
\(\begin{array}{l} \mathop {\lim }\limits_{x \to {{\left( { - 2} \right)}^ - }} y = \mathop {\lim }\limits_{x \to {{\left( { - 2} \right)}^ - }} \frac{{2x - 1}}{{x + 2}} = - \infty \\ \mathop {\lim }\limits_{x \to {{\left( { - 2} \right)}^ + }} y = \mathop {\lim }\limits_{x \to {{\left( { - 2} \right)}^ + }} \frac{{2x - 1}}{{x + 2}} = + \infty \end{array}\)
Vậy đường thẳng x = -2 là tiệm cận đứng của đồ thị hàm số \(y=\frac{2x-1}{x+2}\).
Ví dụ 2:
Tìm tiệm cận đứng và tiệm cận ngang của đồ thị hàm số \(y = \frac{{{x^2} - x + 1}}{{x - 1}}.\)
Lời giải:
TXĐ: \(D = \mathbb{R}\backslash \left\{1 \right\}\)
Ta có:
\(\begin{array}{l} \mathop {\lim }\limits_{x \to {1^ + }} y = \mathop {\lim }\limits_{x \to {1^ + }} \frac{{{x^2} - x + 1}}{{x - 1}} = + \infty \\ \mathop {\lim }\limits_{x \to {1^ - }} y = \mathop {\lim }\limits_{x \to {1^ - }} \frac{{{x^2} - x + 1}}{{x - 1}} = - \infty \end{array}\)
Vậy đường thẳng x = 1 là tiệm cận đứng của đồ thị hàm số \(y = \frac{{{x^2} - x + 1}}{{x - 1}}.\)
Ta có:
\(\begin{array}{l} \mathop {\lim }\limits_{x \to + \infty } y = \mathop {\lim }\limits_{x \to + \infty } \frac{{{x^2} - x + 1}}{{x - 1}} = + \infty \\ \mathop {\lim }\limits_{x \to - \infty } y = \mathop {\lim }\limits_{x \to - \infty } \frac{{{x^2} - x + 1}}{{x - 1}} = - \infty \end{array}\)
Vậy đồ thị hàm số không có tiệm cận ngang.
Ví dụ 3:
Tìm tiệm cận đứng và tiệm cận ngang của đồ thị hàm số \(y = \frac{{\sqrt {{x^2} + 1} }}{x}.\)
Lời giải:
TXĐ: \(D = \mathbb{R}\backslash \left\{0\right\}\)
Ta có:
\(\mathop {\lim }\limits_{x \to - \infty } y = \mathop {\lim }\limits_{x \to - \infty } \frac{{ - x\sqrt {1 + \frac{1}{{{x^2}}}} }}{x} = - 1\)
Suy ra đường thẳng y = -1 là tiệm cận ngang của đồ thị hàm số \(y = \frac{{\sqrt {{x^2} + 1} }}{x}.\)
Ta có:
\(\mathop {\lim }\limits_{x \to + \infty } y = \mathop {\lim }\limits_{x \to + \infty } \frac{{x\sqrt {1 + \frac{1}{{{x^2}}}} }}{x} = 1\)
Suy ra đường thẳng y = 1 là tiệm cận ngang của đồ thị hàm số \(y = \frac{{\sqrt {{x^2} + 1} }}{x}.\)
Ta có:
\(\mathop {\lim }\limits_{x \to {0^ - }} y = \mathop {\lim }\limits_{x \to {0^ - }} \frac{{\sqrt {{x^2} + 1} }}{x} = - \infty\)
\(\mathop {\lim }\limits_{x \to {0^ + }} y = \mathop {\lim }\limits_{x \to {0^ + }} \frac{{\sqrt {{x^2} + 1} }}{x} = + \infty\)
Suy ra đường thẳng x = 0 là tiệm cận đứng của đồ thị hàm số \(y = \frac{{\sqrt {{x^2} + 1} }}{x}.\)
Ví dụ 4:
Tìm tiệm cận đứng và tiệm cận ngang của đồ thị hàm số \(y = 1 + \sqrt {1 - {x^2}}\).
Lời giải:
Ta có:
\(y = 1 + \sqrt {1 - {x^2}} \Leftrightarrow \left\{ \begin{array}{l} - 1 \le x \le 1\\ y \ge 1\\ {x^2} + {(y - 1)^2} = 1 \end{array} \right.\)
Do đó đồ thị hàm số là nửa đường tròn tâm I(0;1) bán kính R = 1.
Vậy đồ thị hàm số không có tiệm cận.
1. Đường tiệm cận ngang
a) Định nghĩa
Đường thẳng \(y=b\) được gọi là tiệm cận ngang của đồ thị hàm số \(y = f(x)\) nếu thỏa mãn một trong các điều kiện sau:
- \(\lim_{x\rightarrow -\infty } f(x) = b\)
- \(\lim_{x\rightarrow +\infty } f(x) = b\)
b) Chú ý
+ Điều kiện để đồ thị hàm số \(y = \frac{P(x)}{Q(x)}\) có tiệm cận ngang là bậc của đa thức P(x) bé hơn hoặc bằng bậc của đa thức Q(x).
+ Tổng quát: Xét hàm số \(y = \frac{a_nx^n + ... + a_0}{b_mx^m + ... + b_0} \)
\(m, n \in N; a_n\neq 0; b_m\neq 0\).
- Điều kiện để hàm số có tiệm cận ngang là \(n\leq m.\)
- Nếu \(n=m\): tiệm cận ngang là đường thẳng \(y = \frac{a_n}{b_m}\)
- Nếu \(n < m\): tiệm cận ngang là đường thẳng y = 0.
2. Đường tiệm cận đứng
a) Định nghĩa
Đường thẳng \(x=a\) được gọi là đường tiệm cận đứng của đồ thị hàm số \(y = f(x)\) nếu thỏa mãn một trong các điều kiện sau:
- \(\lim_{x\rightarrow a^+} f(x) = \pm \infty\)
- \(\lim_{x\rightarrow a^-} f(x) = \pm \infty\)
b) Chú ý
- Đường thẳng \(x=a\) là đường tiệm cận đứng của đồ thị \(y = f(x)\) thì a không thuộc tập xác định của \(f(x)\).
- Đối với hàm phân thức \(y = \frac{P(x)}{Q(x)}\) thì a là nghiệm Q(x)=0.
4. Bài toán Tìm các đường tiệm cận của đồ thị hàm số
Ví dụ 1:
Tìm tiệm cận đứng và tiệm cận ngang của đồ thị hàm số \(y=\frac{2x-1}{x+2}\).
Lời giải:
TXĐ: \(D = \mathbb{R}\backslash \left\{ -2 \right\}\)
Ta có:
\(\begin{array}{l} \mathop {\lim }\limits_{x \to - \infty } y = \mathop {\lim }\limits_{x \to - \infty } \frac{{2x - 1}}{{x + 2}} = 2\\ \mathop {\lim }\limits_{x \to + \infty } y = \mathop {\lim }\limits_{x \to + \infty } \frac{{2x - 1}}{{x + 2}} = 2 \end{array}\)
Vậy đường thẳng y = 2 là tiệm cận ngang của đồ thị hàm số \(y=\frac{2x-1}{x+2}\).
Ta có:
\(\begin{array}{l} \mathop {\lim }\limits_{x \to {{\left( { - 2} \right)}^ - }} y = \mathop {\lim }\limits_{x \to {{\left( { - 2} \right)}^ - }} \frac{{2x - 1}}{{x + 2}} = - \infty \\ \mathop {\lim }\limits_{x \to {{\left( { - 2} \right)}^ + }} y = \mathop {\lim }\limits_{x \to {{\left( { - 2} \right)}^ + }} \frac{{2x - 1}}{{x + 2}} = + \infty \end{array}\)
Vậy đường thẳng x = -2 là tiệm cận đứng của đồ thị hàm số \(y=\frac{2x-1}{x+2}\).
Ví dụ 2:
Tìm tiệm cận đứng và tiệm cận ngang của đồ thị hàm số \(y = \frac{{{x^2} - x + 1}}{{x - 1}}.\)
Lời giải:
TXĐ: \(D = \mathbb{R}\backslash \left\{1 \right\}\)
Ta có:
\(\begin{array}{l} \mathop {\lim }\limits_{x \to {1^ + }} y = \mathop {\lim }\limits_{x \to {1^ + }} \frac{{{x^2} - x + 1}}{{x - 1}} = + \infty \\ \mathop {\lim }\limits_{x \to {1^ - }} y = \mathop {\lim }\limits_{x \to {1^ - }} \frac{{{x^2} - x + 1}}{{x - 1}} = - \infty \end{array}\)
Vậy đường thẳng x = 1 là tiệm cận đứng của đồ thị hàm số \(y = \frac{{{x^2} - x + 1}}{{x - 1}}.\)
Ta có:
\(\begin{array}{l} \mathop {\lim }\limits_{x \to + \infty } y = \mathop {\lim }\limits_{x \to + \infty } \frac{{{x^2} - x + 1}}{{x - 1}} = + \infty \\ \mathop {\lim }\limits_{x \to - \infty } y = \mathop {\lim }\limits_{x \to - \infty } \frac{{{x^2} - x + 1}}{{x - 1}} = - \infty \end{array}\)
Vậy đồ thị hàm số không có tiệm cận ngang.
Ví dụ 3:
Tìm tiệm cận đứng và tiệm cận ngang của đồ thị hàm số \(y = \frac{{\sqrt {{x^2} + 1} }}{x}.\)
Lời giải:
TXĐ: \(D = \mathbb{R}\backslash \left\{0\right\}\)
Ta có:
\(\mathop {\lim }\limits_{x \to - \infty } y = \mathop {\lim }\limits_{x \to - \infty } \frac{{ - x\sqrt {1 + \frac{1}{{{x^2}}}} }}{x} = - 1\)
Suy ra đường thẳng y = -1 là tiệm cận ngang của đồ thị hàm số \(y = \frac{{\sqrt {{x^2} + 1} }}{x}.\)
Ta có:
\(\mathop {\lim }\limits_{x \to + \infty } y = \mathop {\lim }\limits_{x \to + \infty } \frac{{x\sqrt {1 + \frac{1}{{{x^2}}}} }}{x} = 1\)
Suy ra đường thẳng y = 1 là tiệm cận ngang của đồ thị hàm số \(y = \frac{{\sqrt {{x^2} + 1} }}{x}.\)
Ta có:
\(\mathop {\lim }\limits_{x \to {0^ - }} y = \mathop {\lim }\limits_{x \to {0^ - }} \frac{{\sqrt {{x^2} + 1} }}{x} = - \infty\)
\(\mathop {\lim }\limits_{x \to {0^ + }} y = \mathop {\lim }\limits_{x \to {0^ + }} \frac{{\sqrt {{x^2} + 1} }}{x} = + \infty\)
Suy ra đường thẳng x = 0 là tiệm cận đứng của đồ thị hàm số \(y = \frac{{\sqrt {{x^2} + 1} }}{x}.\)
Ví dụ 4:
Tìm tiệm cận đứng và tiệm cận ngang của đồ thị hàm số \(y = 1 + \sqrt {1 - {x^2}}\).
Lời giải:
Ta có:
\(y = 1 + \sqrt {1 - {x^2}} \Leftrightarrow \left\{ \begin{array}{l} - 1 \le x \le 1\\ y \ge 1\\ {x^2} + {(y - 1)^2} = 1 \end{array} \right.\)
Do đó đồ thị hàm số là nửa đường tròn tâm I(0;1) bán kính R = 1.
Vậy đồ thị hàm số không có tiệm cận.