Lý thuyết Phương trình, bất phương trình mũ và lôgarit - Toán 11 Chân trời sáng tạo

1. Phương trình mũ cơ bản Phương trình mũ cơ bản có dạng \({a^x} = b\)(với \(a > 0,a \ne 1\)).


1. Phương trình mũ cơ bản

Phương trình mũ cơ bản có dạng \({a^x} = b\)(với \(a > 0,a \ne 1\)).

- Nếu b > 0 thì phương trình có nghiệm duy nhất \(x = {\log _a}b\).

- Nếu b \( \le \) 0 thì phương trình vô nghiệm.

Chú ý: Với \(a > 0,a \ne 1\)

a) \({a^x} = {a^\alpha } \Leftrightarrow x = \alpha \).

b) Tổng quát hơn, \({a^{u\left( x \right)}} = {a^{v\left( x \right)}} \Leftrightarrow u\left( x \right) = v\left( x \right)\)

Minh họa bằng đồ thị:

2. Phương trình lôgarit cơ bản

Phương trình lôgarit cơ bản có dạng \({\log _a}x = b\left( {a > 0,a \ne 1} \right)\).

Phương trình luôn có nghiệm duy nhất \(x = {a^b}\).

Chú ý: Với \(a > 0,a \ne 1\)

a) \({\log _a}u\left( x \right) = b \Leftrightarrow u\left( x \right) = {a^b}\).

b) \({\log _a}u\left( x \right) = {\log _a}v\left( x \right) \Leftrightarrow \left\{ \begin{array}{l}u\left( x \right) > 0\\u\left( x \right) = v\left( x \right)\end{array} \right.\).

Có thể thay \(u\left( x \right) > 0\) bằng \(v\left( x \right) > 0\) (chọn bất phương trình đơn giản hơn)

Minh họa bằng đồ thị:

3. Bất phương trình mũ cơ bản

Bất phương trình mũ cơ bản có dạng \({a^x} > b\) (hoặc \({a^x} \ge b,{a^x} < b,{a^x} \le b\)) với \(a > 0,a \ne 1\).

Bảng tổng kết về nghiệm của các bất phương trình trên:

Chú ý:

Nếu a > 1 thì \({a^{u\left( x \right)}} = {a^{v\left( x \right)}} \Leftrightarrow u\left( x \right) > v\left( x \right)\).

Nếu 0 < a < 1 thì \({a^{u\left( x \right)}} > {a^{v\left( x \right)}} \Leftrightarrow u\left( x \right) < v\left( x \right)\).

4. Bất phương trình lôgarit cơ bản

Bất phương trình lôgarit cơ bản có dạng \({\log _a}x > b\)(hoặc \({\log _a}x \ge b,{\log _a}x < b,{\log _a}x \le b\)) với \(a > 0,a \ne 1\).

Bảng tổng kết về nghiệm của các bất phương trình trên:

Chú ý:

Nếu a > 1 thì \({\log _a}u\left( x \right) > {\log _a}v\left( x \right) \Leftrightarrow \left\{ \begin{array}{l}v\left( x \right) > 0\\u\left( x \right) > v\left( x \right)\end{array} \right.\).

Nếu 0 < a < 1 thì \({\log _a}u\left( x \right) > {\log _a}v\left( x \right) \Leftrightarrow \left\{ \begin{array}{l}u\left( x \right) > 0\\u\left( x \right) < v\left( x \right)\end{array} \right.\).

Bài giải tiếp theo



Từ khóa phổ biến