Giải mục 3 trang 31, 32 SGK Toán 8 tập 1 - Kết nối tri thức
Với hai số a,b bất kì, thực hiện phép tính
HĐ3
Với hai số a,b bất kì, thực hiện phép tính \(\left( {a + b} \right).\left( {a + b} \right)\).
Từ đó rút ra liên hệ giữa \({\left( {a + b} \right)^2}\) và \({a^2} + 2ab + {b^2}\)
Phương pháp giải:
Muốn nhân hai đa thức ta nhân mỗi hạng tử của đa thức này với từng hạng tử của đa thức kia rồi cộng các kết quả với nhau.
Lời giải chi tiết:
\(\left( {a + b} \right).\left( {a + b} \right) = a.a + a.b + b.a + b.b = {a^2} + \left( {ab + ab} \right) + {b^2} = {a^2} + 2ab + {b^2}\)
Từ đó ta được \({\left( {a + b} \right)^2} = {a^2} + 2ab + {b^2}\)
Luyện tập 3
- Khai triển \({\left( {2b + 1} \right)^2}\)
- Viết biểu thức \(9{y^2} + 6yx + {x^2}\) dưới dạng bình phương của một tổng.
Phương pháp giải:
Sử dụng hằng đẳng thức \({\left( {a + b} \right)^2} = {a^2} + 2ab + {b^2}\)
Lời giải chi tiết:
1. \({\left( {2b + 1} \right)^2} = {\left( {2b} \right)^2} + 2.2b.1 + {1^2} = 4{b^2} + 4b + 1\)
2. \(9{y^2} + 6yx + {x^2} = {\left( {3y} \right)^2} + 2.3y.x + {x^2} = {\left( {3y + x} \right)^2}\)
Search google: "từ khóa + timdapan.com" Ví dụ: "Giải mục 3 trang 31, 32 SGK Toán 8 tập 1 - Kết nối tri thức timdapan.com"