Giải mục 2 trang 68,69,70 SGK Toán 12 tập 1 - Cánh diều
Tọa độ của một vecto
HĐ3
Trả lời câu hỏi Hoạt động 3 trang 68 SGK Toán 12 Cánh diều
Cho điểm M trong không gian với hệ tọa độ Oxyz
a) Vẽ vecto \(\overrightarrow {OM} \)
b) Nêu cách xác định tọa độ của điểm M
Lời giải chi tiết:
a)
b) Nếu \(\;\overrightarrow {OM} \) có tọa độ (a;b;c) thì ta viết \(\;\overrightarrow {OM} \) = (a;b;c), trong đó a là hoành độ, b là tung độ và c là cao độ
HĐ4
Trả lời câu hỏi Hoạt động 4 trang 69 SGK Toán 12 Cánh diều
Trong không gian với hệ tọa độ Oxyz, cho vecto \(\vec u\;\)(hình 28). Hãy xác định điểm A sao cho \(\overrightarrow {OA} = \vec u\)
Phương pháp giải:
Vẽ \(\overrightarrow {OA\;} \)có tung độ, hoành độ và cao độ giống nhau
Lời giải chi tiết:
\(\overrightarrow {OA} = \vec u\) khi cả hai có chung tung độ hoành độ và cao độ bằng nhau
HĐ5
Trả lời câu hỏi Hoạt động 5 trang 70 SGK Toán 12 Cánh diều
Trong không gian với hệ tọa độ Oxyz, cho vecto \(\vec u = \left( {a;b;c} \right)\)( hình 31)
Lấy điểm A sao cho \(\overrightarrow {OA} = \vec u\).
a) Tìm hoành độ, tung độ và cao độ của điểm A
b) Biểu diễn vecto \(\overrightarrow {OH} \) qua vecto\(\;\vec i\) vecto \(\overrightarrow {OK} \) qua vecto \(\vec j\) ,vecto \(\overrightarrow {OP} \)qua vecto \(\vec k\)
c) Biểu diễn vecto \(\vec u\;\)theo các vecto \(\vec i,\vec j,\vec k\)
Phương pháp giải:
Áp dụng quy tắc các tọa độ của vecto
Lời giải chi tiết:
a)Ox là hoành độ của điểm A
Oy là tung dộ của điểm A
Oz là cao độ của điểm A
\(b)\overrightarrow {OH} = \overrightarrow {ai} \)
\(\overrightarrow {OK} = \overrightarrow {jb} \)
\(\overrightarrow {OP} = \overrightarrow {kc} \)
c) \(\vec u = \overrightarrow {OA} = \overrightarrow {OH} + \overrightarrow {OK} \)
=> \(\vec u = \overrightarrow {ai} + \overrightarrow {bj} \)
HĐ6
Trả lời câu hỏi Hoạt động 6 trang 71 SGK Toán 12 Cánh diều
Trong không gian với hệ tọa độ Oxyz, cho hai điểm \(A({x_A};{y_A};{z_A}),B({x_B};{y_B};{z_B})\)
a.Biểu diễn mỗi vecto \(\overrightarrow {OA} ,\overrightarrow {OB} \) theo các vecto \(\overrightarrow i ,\overrightarrow j \) và \(\overrightarrow k \)
b. Tìm liên hệ giữa \(\overrightarrow {AB} \) và \(({x_B} - {x_A}).\vec i + ({y_B} - {y_A}).\vec j + ({z_B} - {z_A}).\vec k\)
c. Từ đó, tìm tọa độ vecto \(\overrightarrow {AB} \)
Phương pháp giải:
Sử dụng lý thuyết tọa độ của vecto trong không gian
Lời giải chi tiết:
a) \(\overrightarrow {OA} = \overrightarrow {O{A_1}} + \overrightarrow {OP} = \overrightarrow {OH} + \overrightarrow {OK} = {x_A}.\overrightarrow i + {y_A}.\overrightarrow j + {z_A}.\overrightarrow k \)
Tương tự, ta có: \(\overrightarrow {OB} = {x_B}.\overrightarrow i + {y_B}.\overrightarrow j + {z_B}.\overrightarrow k \)
b) Ta có: \(\overrightarrow {AB} = \overrightarrow {OB} - \overrightarrow {OA} = {x_B}.\overrightarrow i + {y_B}.\overrightarrow j + {z_B}.\overrightarrow k - ({x_A}.\overrightarrow i + {y_A}.\overrightarrow j + {z_A}.\overrightarrow k ) = ({x_B} - {x_A}).\overrightarrow i + ({y_B} - {y_A}).\overrightarrow j + ({z_B} - {z_A}).\overrightarrow k \)
c)Tọa độ vecto \(\overrightarrow {AB} ({x_B} - {x_A};{y_B} - {y_A};{z_B} - {z_A})\)
Search google: "từ khóa + timdapan.com" Ví dụ: "Giải mục 2 trang 68,69,70 SGK Toán 12 tập 1 - Cánh diều timdapan.com"