Giải mục 1 trang 89 SGK Toán 11 tập 2 - Chân trời sáng tạo
Gieo hai con xúc xắc cân đối và đồng chất
Hoạt động 1
Gieo hai con xúc xắc cân đối và đồng chất. Gọi \(A\) là biến cố “Tổng số chấm xuất hiện trên hai con xúc xắc bằng 5”, \(B\) là biến cố “Tích số chấm xuất hiện trên hai con xúc xắc bằng 6”.
a) Hãy viết tập hợp mô tả các biến cố trên.
b) Hãy liệt kê các kết quả của phép thử làm cho cả hai biến cố \(A\) và \(B\) cùng xảy ra.
Phương pháp giải:
Liệt kê các phần tử của tập hợp.
Lời giải chi tiết:
a) \(A = \left\{ {\left( {1;4} \right);\left( {2;3} \right);\left( {3;2} \right);\left( {4;1} \right)} \right\}\)
\(B = \left\{ {\left( {1;6} \right);\left( {2;3} \right);\left( {3;2} \right);\left( {6;1} \right)} \right\}\)
b) Các kết quả của phép thử làm cho cả hai biến cố \(A\) và \(B\) cùng xảy ra là \(\left( {2;3} \right);\left( {3;2} \right)\)
Thực hành 1
Tiếp tục với phép thử ở Ví dụ 1.
a) Gọi \(D\) là biến cố “Số chấm xuất hiện trên con xúc xắc thứ nhất là 3”. Hãy xác định các biến cố \(AD,BD\) và \(C{\rm{D}}\).
b) Gọi \(\bar A\) là biến cố đối của biến cố \(A\). Hãy viết tập hợp mô tả các biến cố giao \(\bar AB\) và \(\bar AC\).
Phương pháp giải:
Liệt kê các phần tử của tập hợp.
Lời giải chi tiết:
a) \(D = \left\{ {\left( {3;1} \right);\left( {3;2} \right);\left( {3;3} \right);\left( {3;4} \right);\left( {3;5} \right);\left( {3;6} \right)} \right\}\)
\(A{\rm{D}} = \left\{ {\left( {3;2} \right)} \right\};B{\rm{D}} = \left\{ {\left( {3;2} \right)} \right\};C{\rm{D}} = \left\{ {\left( {3;1} \right)} \right\}\)
b) \(\bar AB = \left\{ {\left( {1;6} \right);\left( {6;1} \right)} \right\}\)
\(\bar A{\rm{C}} = \left\{ {\left( {1;6} \right);\left( {6;1} \right);\left( {1;5} \right);\left( {5;1} \right);\left( {1;3} \right);\left( {3;1} \right);\left( {1;2} \right);\left( {2;1} \right);\left( {1;1} \right)} \right\}\)
Search google: "từ khóa + timdapan.com" Ví dụ: "Giải mục 1 trang 89 SGK Toán 11 tập 2 - Chân trời sáng tạo timdapan.com"