Giải bài tập 6.3 trang 70 SGK Toán 12 tập 2 - Kết nối tri thức
Gieo hai con xúc xắc cân đối, đồng chất. Tính xác suất để: a) Tổng số chấm xuất hiện trên hai con xúc xắc bằng 7 nếu biết rằng ít nhất có một con xúc xắc xuất hiện mặt 5 chấm; b) Có ít nhất một con xúc xắc xuất hiện mặt 5 chấm nếu biết rằng tổng số chấm xuất hiện trên hai con xúc xắc bằng 7.
Đề bài
Gieo hai con xúc xắc cân đối, đồng chất. Tính xác suất để:
a) Tổng số chấm xuất hiện trên hai con xúc xắc bằng 7 nếu biết rằng ít nhất có một con xúc xắc xuất hiện mặt 5 chấm;
b) Có ít nhất một con xúc xắc xuất hiện mặt 5 chấm nếu biết rằng tổng số chấm xuất hiện trên hai con xúc xắc bằng 7.
Phương pháp giải - Xem chi tiết
Sử dụng kiến thức về công thức tính xác suất có điều kiện để tính: Cho hai biến cố A và B bất kì, với \(P\left( B \right) > 0\). Khi đó, \(P\left( {A|B} \right) = \frac{{P\left( {AB} \right)}}{{P\left( B \right)}}\).
Lời giải chi tiết
Gieo hai con xúc xắc cân đối, đồng chất thì số phần tử của không gian mẫu là \(n\left( \Omega \right) = 6.6 = 36\)
Gọi A là biến cố: “Tổng số chấm xuất hiện trên hai con xúc xắc bằng 7”, B là biến cố “ít nhất có một con xúc xắc xuất hiện mặt 5 chấm”.
Khi đó biến cố AB là: “Tổng số chấm xuất hiện trên hai con xúc xắc bằng 7 và ít nhất có một con xúc xắc xuất hiện mặt 5 chấm”.
Tập hợp các kết quả thuận lợi của biến cố A là: \(\left\{ {\left( {1;6} \right);\left( {2;5} \right);\left( {3;4} \right);\left( {4;3} \right);\left( {5;2} \right);\left( {6;1} \right)} \right\}\) nên \(n\left( A \right) = 6\). Do đó, \(P\left( A \right) = \frac{6}{{36}}\)
Tập hợp các kết quả thuận lợi của biến cố B là:
\(\left\{ {\left( {1;5} \right);\left( {2;5} \right);\left( {3;5} \right)\left( {4;5} \right);\left( {5;5} \right);\left( {6;5} \right);\left( {5;1} \right);\left( {5;2} \right);\left( {5;3} \right);\left( {5;4} \right);\left( {5;6} \right)} \right\}\) nên \(n\left( B \right) = 11\)
Do đó, \(P\left( B \right) = \frac{{11}}{{36}}\)
Tập hợp các kết quả thuận lợi của biến cố AB là: \(\left\{ {\left( {2;5} \right);\left( {5;2} \right)} \right\}\) nên \(n\left( {AB} \right) = 2\)
Do đó, \(P\left( {AB} \right) = \frac{2}{{36}}\)
a) Vậy \(P\left( {A|B} \right) = \frac{{P\left( {AB} \right)}}{{P\left( B \right)}} = \frac{2}{{11}}\).
b) Vậy \(P\left( {B|A} \right) = \frac{{P\left( {AB} \right)}}{{P\left( A \right)}} = \frac{2}{6} = \frac{1}{3}\).
Search google: "từ khóa + timdapan.com" Ví dụ: "Giải bài tập 6.3 trang 70 SGK Toán 12 tập 2 - Kết nối tri thức timdapan.com"