Giải bài tập 1.36 trang 26 SGK Toán 9 tập 1 - Cùng khám phá

Phương trình \(\left( {3a + 4b + 1} \right)x = a + 3b - 3\) có vô số nghiệm \(x \in \mathbb{R}\) khi: A. \(a = 1\) và \(b = - 1\). B. \(a = - 3\) và \(b = 2\). C. \(a = 5\) và \(b = - 4\). D. \(a = - 7\) và \(b = 5\).


Đề bài

Phương trình \(\left( {3a + 4b + 1} \right)x = a + 3b - 3\) có vô số nghiệm \(x \in \mathbb{R}\) khi:

A. \(a = 1\) và \(b =  - 1\).

B. \(a =  - 3\) và \(b = 2\).

C. \(a = 5\) và \(b =  - 4\).

D. \(a =  - 7\) và \(b = 5\).

Phương pháp giải - Xem chi tiết

Cho hai vế của phương trình bằng 0 rồi giải hệ phương trình.

Lời giải chi tiết

Để phương trình \(\left( {3a + 4b + 1} \right)x = a + 3b - 3\) có vô số nghiệm \(x \in \mathbb{R}\) khi:

\(\left\{ \begin{array}{l}3a + 4b + 1 = 0\\a + 3b - 3 = 0\end{array} \right. \Rightarrow \left\{ \begin{array}{l}a =  - 3\\b = 2\end{array} \right..\)

Chọn đáp án B.

Bài giải tiếp theo



Bài học liên quan

Từ khóa phổ biến