Giải bài 9 trang 12 Chuyên đề học tập Toán 10 – Cánh diều

Sử dụng máy tính cầm tay để tìm nghiệm của các hệ phương trình:


Đề bài

Sử dụng máy tính cầm tay để tìm nghiệm của các hệ phương trình:

a) \(\left\{ \begin{array}{l} - x + 2y - 3z = 2\\2x + y + 2z =  - 3\\ - 2x - 3y + z = 5\end{array} \right.\)

b) \(\left\{ \begin{array}{l}x - 3y + z = 1\\5y - 4z = 0\\x + 2y - 3z =  - 1\end{array} \right.\)

c) \(\left\{ \begin{array}{l}x + y - 3z =  - 1\\3x - 5y - z =  - 3\\ - x + 4y - 2z = 1\end{array} \right.\)

Phương pháp giải - Xem chi tiết

Dùng máy tính cầm tay để tìm nghiệm của hệ

\(\left\{ \begin{array}{l}ax + by + cz = d\\a'x + b'y + c'z = d'\\a''x + b''y + c''z = d''\end{array} \right.\)

+) Mở máy, ấn liên tiếp các phím:

MODE 5 2 a = b = c = d = a’ = b’ = c’ = d’ = a’’ = b’’ = c’’ = d’’=

+) Màn hình hiển thị:

X = >> Ấn tiếp phím = để lấy gía trị của Y và Z. >> Kết luận nghiệm.

No-Solution >> KL: hệ vô nghiệm

Infinite Sol >> KL: hệ có vô số nghiệm

Lời giải chi tiết

a) \(\left\{ \begin{array}{l} - x + 2y - 3z = 2\\2x + y + 2z =  - 3\\ - 2x - 3y + z = 5\end{array} \right.\)

Hệ phương trình có nghiệm duy nhất \(\left( { - 4;\frac{{11}}{7};\frac{{12}}{7}} \right)\)

b) \(\left\{ \begin{array}{l}x - 3y + z = 1\\5y - 4z = 0\\x + 2y - 3z =  - 1\end{array} \right.\)

Hệ phương trình vô nghiệm.

c) \(\left\{ \begin{array}{l}x + y - 3z =  - 1\\3x - 5y - z =  - 3\\ - x + 4y - 2z = 1\end{array} \right.\)

Hệ phương trình có vô số nghiệm.

 

Bài giải tiếp theo