Giải bài 5 trang 82 SGK Toán 7 tập 2 - Chân trời sáng tạo
Cho tam giác AMN vuông tại A. Tia phân giác của góc M và N cắt nhau tại I. Tia MI cắt AN tại R. Kẻ RT vuông góc với AI tại T. Chứng minh rằng AT = RT.
Đề bài
Cho tam giác AMN vuông tại A. Tia phân giác của góc M và N cắt nhau tại I. Tia MI cắt AN tại R. Kẻ RT vuông góc với AI tại T. Chứng minh rằng AT = RT.
Phương pháp giải - Xem chi tiết
- Ta chứng minh AT = RT bằng cách chứng minh tam giác ATR cân tại T
- Để chứng minh tam giác ART cân tại T ta sử dụng tính chất 2 góc đáy trong tam giác bằng nhau
Lời giải chi tiết
Theo đề bài ta có tia phân giác của góc M, N cắt nhau tại I
\( \Rightarrow \) I là điểm giao của 3 phân giác trong tam giác AMN
\( \Rightarrow \) AI là phân giác của góc A
\( \Rightarrow \) \(\widehat {IAN} = \widehat {IAM} = {45^o}\)(góc A vuông)
Xét tam giác ATR có \(\widehat {IAN} = {45^o}\) và \(\widehat {ATR} = {90^o}\) theo định lí tổng 3 góc trong 1 tam giác
\( \Rightarrow \widehat {IAN} + \widehat {ATR} + \widehat {TRA} = {180^o} \Rightarrow \widehat {TRA} = {180^o} - {90^o} - {45^o} = {45^o}\)
\( \Rightarrow \Delta ATR \) vuông cân tại T ( tam giác có 2 góc ở đáy = 45 độ )
\( \Rightarrow AT = TR\)
Search google: "từ khóa + timdapan.com" Ví dụ: "Giải bài 5 trang 82 SGK Toán 7 tập 2 - Chân trời sáng tạo timdapan.com"