Giải bài 48 trang 56 sách bài tập toán 11 - Cánh diều

Cho dãy số (left( {{u_n}} right)) biết ({u_1} = 2), ({u_n} = frac{1}{3}left( {{u_{n - 1}} + 1} right))


Đề bài

Cho dãy số \(\left( {{u_n}} \right)\) biết \({u_1} = 2\), \({u_n} = \frac{1}{3}\left( {{u_{n - 1}} + 1} \right)\) với \(n \ge 2\). Số hạng \({u_4}\) bằng:

A. \({u_4} = 1\)                      

B. \({u_4} = \frac{2}{3}\)                

C. \({u_4} = \frac{{14}}{{27}}\)               

D. \({u_4} = \frac{5}{9}\)

Phương pháp giải - Xem chi tiết

Thay \(n = 2\), \(n = 3\), \(n = 4\) vào công thức \({u_n} = \frac{1}{3}\left( {{u_{n - 1}} + 1} \right)\) để tính \({u_2}\), \({u_3}\), \({u_4}\).

Lời giải chi tiết

Ta có:

\({u_2} = \frac{1}{3}\left( {{u_1} + 1} \right) = \frac{1}{3}\left( {2 + 1} \right) = 1\)

\({u_3} = \frac{1}{3}\left( {{u_2} + 1} \right) = \frac{1}{3}\left( {1 + 1} \right) = \frac{2}{3}\)

\({u_4} = \frac{1}{3}\left( {{u_3} + 1} \right) = \frac{1}{3}\left( {\frac{2}{3} + 1} \right) = \frac{5}{9}\)

Đáp án đúng là D.



Từ khóa phổ biến